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1. ABSTRACT

Tuberculosis (TB) is an infectious disease
caused by different strains of Mycobacterium
tuberculosis complex. TB is a curable infection if
diagnosed correctly and timely. Late diagnosis and
improper treatment may lead to relapse or its escalation
to MDR / XDR-TB. TB with HIV co-infection is difficult
to diagnose by conventional set-up. Also, detection
of child TB and extrapulmonary TB has its own set
of problems and is not straightforward to diagnose.
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The increasing complexity of TB due to the advent
of new circulating strains and invasion to the regions
where it was non-existent or thought to be eradicated
is putting a severe strain on the health management
services and making it an unmanageable pandemic.
This increasing complexity has led to the spurt in the
development of TB diagnostics platforms. This review
focuses on the new emerging technologies that have
changed the diagnostics landscape.
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2. INTRODUCTION

Tuberculosis (TB) is a transmissible disease
caused by the bacterium Mycobacterium tuberculosis
(MTB). The bacterium normally targets the lungs
causing pulmonary TB (PTB). It can also infect and
spread to the other parts of the body like kidney,
spine and brain causing extra pulmonary TB (EPTB)
there. It usually spreads through the air by means of
respiratory droplets through the sneeze or cough of an
infected person. For diagnosis of pulmonary TB (PTB)
which is more common, samples from respiratory
tract like sputum, induced sputum, broncho aleveolar
lavage or lung biopsy is usually done. Diagnosis of
extrapulmonary TB (EPTB) depends on the site of
infection, e.g. stool sample for intestinal TB to detect
Mycobacterium avium as in the case of AIDS patients;
other samples may include biopsies, aspirates, pus,
urine, and sterile body fluids like cerebrospinal,
synovial, pleural, pericardial, and peritoneal fluids (1-3).

Tuberculosis continues to be the major
cause of mortality despite all sorts of developments in
medicare including diagnostics and medicines. It poses
continued threat to the health programs and services
in resource poor set-ups. Co-infection with HIV is the
new factor that is responsible for the escalation of TB
(9% of global TB incidence) (4). Majority of infection
in human results in an asymptomatic latent infection
and about one in ten latent infection progresses to
active TB if left untreated, killing more than 50 percent
of those infected. The situation becomes aggravated
further due to its co-infection with HIV and incomplete
treatment worsening it further to relapse cases and
emergence of drug resistance in the form of multi drug
resistant (MDR) and extensively drug resistant (XDR)-
TB. MDR-TB develops due to bacterial resistant to
first line TB drugs like rifampicin (RIF) and isoniazid
(INH), while XDR-TB occurs due to bacterial resistant
to fluoroquinone (FLQ), amikacin (AMK), kanamycin
(KAN) and Capreomycin (CPM). Tuberculosis is difficult
to diagnose due to the late onset of symptoms, so that
a person acts as a reservoir of TB bacilli with potential
to infect others. Similarly, co-infection with HIV makes
TB difficult to detect via conventional sputum smear
microscopy (SSM) / X-ray. Late diagnosis coupled
with incomplete treatment escalates it to MDR and
XDR-TB. Although MDR-TB is curable via second line
anti-TB drugs, therapy is ineffective, marred with toxic
effects and require almost 2 years of treatment which
is certain to have its side effect (1-3).

20" century has seen spurt of development
in TB diagnostics and medicare from conventional
sputum microscopy to Nucleic acid amplification
test (NAAT) based molecular and biosensing based
protocols, culminating into genome sequencing. This
has generated a ray of hope for the timely and accurate
diagnosis and treatment, hence eradication of TB.
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However, it is still the giant killer and major cause
of mortality and morbidity. Main cause of concern is
the emergence of TB bacilli in the regions where it is
thought to be completely eradicated. Irrespective of
the evolution of fancy and improvised technologies
for TB diagnosis SSM and culture based (Lowenstein-
Jensen (LJ) media) are still the most reliable and
preferred diagnostics of choice for detecting AFB
causing active TB, particularly for resource limiting set
up of developing countries (2-5).

Timely detection and effective treatment
are essential for managing tuberculosis. However,
the rate of global case detection is considerably
low. The diagnosis of pediatric TB and EPTB is
particularly difficult and there are, as yet, no rapid
screening tests that can help finding active cases
in the target population. Tuberculosis diagnosis is
primarily based on the culture method and non-culture
methods. Recently, it is complemented by cutting edge
molecular and genome sequencing techniques that
have increased the sensitivity of TB diagnosis manifold
and also provide epidemiological information about it
prevalence, INTRODUCTION of new strains or cause
of relapse etc (2-3).

This systematic review has incorporated a
decadal growth in TB diagnostics from conventional
SSM to NAAT based molecular and sequencing based
protocols. The review also highlights the TB diagnostics
in varied set-ups focusing on challenges of customized
diagnostics. In addition, review elucidates on currently
available and upcoming protocols and barriers to their
successful uptake. The review further focuses on the
advantage and disadvantages of each technique /
protocol and intends to complement earlier reviews
and reports, stimulating discussion and informing
potential opportunities for market intervention to
improve access to effective TB diagnostics.

2.1. Search strategy and selection criteria

The references for this review were identified
through searches of PubMed for articles published
from 2005 to 2016 by the use of terms “Tuberculosis”,
“diagnostics”, “DST”, “SSM”, “NAAT”. Relevant articles
published during the aforementioned period were
identified through searches from secondary sources
(published reports, peer reviewed papers, WHO
policies, UNITAID landscape report, and developer’s
website).

3. SPUTUM SMEAR MICROSCOPY (SSM)

Time tested diagnosis for active tuberculosis
(TB) involves detection of Mycobacterium tuberculosis
complex bacilli in specimens from the respiratory tract
for PTB or specimens from other bodily sites for EPTB.
Microscopic analysis of sputum smear detects AFB by
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Table 1. Imaging techniques

1. | SSM Developed by Imaging Sputum | Bacterial Fails to differentiate | Lower, could Low
Robert Koch loadindicator, between beincreased
(1870) Rapid,economical | tubercularand non- byfluorescent
tuberculour, bias of staining or
technician, cannot byincubating
detectEPTB with CB-18
(20-30%)
2. | TBDx Signature Imaging Sputum | High-thoughput High tier High High
mapping medical (200slides), infrastructure
sciences, USA roboticloading of and trained
stained slides, manpowerrequired,
output asdigitized | a limitationin low
images economical set-up
3. | CellScope UC Berkeley / Fluoresence Blood High resolution Lack ofaccess in Sufficientstudy | Sufficient
CITRIS /Banatao | Microscope sample | enlarged under developed /data required | study/
Instit. digitizedimage countries, Insufficient data
studies tovalidate required
its utility
4. | CXRsalgorithm Imaging Chest Rapid detection Trained expertise High High
CAD4TB X-ray of active TB required
particularly in
HIV co-infection,
can be interfaced
with other such
platform, detects
both active and
passive TB
5. | Easyport able (Delft Imaging Chest Capacity to hold Trained expertise High High
DCXR ImagingSystems) X- ray 50,000 DCXR required
images, can be
operated from a
laptop
6. | riView-TB Advenio Imaging,CAD4TB | Chest Easy to interpret Prior training in High High
(Chandigarh, enabledautomated | X-ray images, clinical radiography
India) imageanalys simultaneos required
issoftware similar diagnosis of
toDCXR pneumo nia
and silicosis to
complementPTB
diagnosis

Ziehl-Neelsen(Z-N) staining (6). Sputum test is good
indicator of bacterial load hence the infectivity. It is
the most common, rapid and economical diagnostic
method for active PTB diagnosis but it has lower
sensitivity, when bacterial load is less than 10,000
bacilli / ml of sputum (Table 1). However, sensitivity
can be improved by fluorescent staining (auramine-
rhodamine) coupled with LED microscopes but
it fails to distinguish between tuberculous and
nontuberculous bacteria. Other limitations include
prevalent epidemiological factors in the region
of interest and skill of laboratory technician (7-8)
(Table 1). Laserson et al. (2005) (9) in their study of
Viatnamese immigrants have observed that incubation
of sputum with detergent C18-Carboxypropylbetaine
(CB-18) for 24 hours improves the sensitivity of AFB
staining by 20-30% when compared to direct auramine
and Z-N staining (9). Sputum analysis cannot detect
EPTB. There might be a possibility that bacilli resides
in cavities of lungs and may not be there in sputum.
Decontamination process of sputum for mycobacterial
culture may lead to the loss of bacilli from the sputum.
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In addition, HIV patients and children might found it
difficult to produce sputum. These constraints severely
limit the utility of this very simple and economical
diagnostics method'°.

TBDx developed by signature mapping
medical sciences, USA is an automated high-
thoughput system with the capacity of 200 slides. It
utilizes robotic loading of stained slides. Results are
rapid in few minutes in the form of high resolution
digital image (8, 11-12) (Table 1).

4. IMAGING BASED DIAGNOSIS: FUTURE OF
AUTOMATED MICROSCOPY

Priority based treatment depending on the
severity of symptoms have the potential to discriminate
amongstthose atrisk fromthe people bearing symptoms
of PTB but do not actually have TB. Chest X-ray
(CXRs) serves as a potent algorithm in mathematical
analysis of TB epidemiology. CXR integrated with user
friendly, robust interface has evolved into an automated
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algorithm to quantify abnormalities from digital CXR
(DCXR) images. DCXR can be utilized for both active
and passive TB diagnosis. It can be interfaced with
other such platforms like as Xpert® MTB/RIF for rapid
detection of active TB particularly in HIV co-infection
setup. It is an economical tool with high sensitivity and
specificity and could be a tool of need in low resource
set-up (Table 1). Delft Imaging Systems (Netherlands)
have come up with a software to score CXR image at
the rate of one per minute. Fourth version of Computer
aided detection for tuberculosis (CAD4TB) (Delft
Imaging Systems) can also be integrated with DCXR
platform (13-14). EasyPortable DCXR (Delft Imaging
Systems) fits the requirement of limited resource set
up. It includes an X-ray detector, CAD4TB software
and Picture Archive and Communication System
(PACS) with a capacity to hold 50,000 DCXR images
and can operate from a laptop (2) (Table 1).

Advenio (Chandigarh, India) has launched
riView-TB, a CAD4TB enabled automated image
analysis software similar to DCXR. This platform
provides easy to interpret images without prior training
in clinical radiography. It is slated to be improvised for
simultaneous diagnosis of pneumonia and silicosis to
complement PTB diagnosis (2) (Table 1).

CellScope, a mobile cell microscope (CITRIS,
University of California, Berkeley, San Francisco) is
another innovation in the series of next generation
microscopy. It is a fluorescence microscope that gives
output in the form of high resolution enlarged digitized
fluorescent images of blood samples to detect rod
shaped bacterium (8, 15) (Table 1).

5. SAMPLE COLLECTION

A good quality sample in sufficient amount
is a prime requirement for accurate diagnosis. This
becomes a limitation with children and HIV patients
who cannot cough up enough sputum. Lung flute from
Medical Acoustics (USA) allows the patient to collect
their own sample when they are not able to expectorate
enough volume. It consists of a plastic device held via
lips to exhale air into it. This generates vibrations in
the lungs that soften and liquefy the sputum enabling
patient to cough out more sputum (16).

Deton Corp. (USA) has come up with one liter
bag to collect microdroplets presumed to contain MTB
bacilli. These microdroplets are used for diagnosis (3).
DNA Genotek Inc. (Ottawa, Canada) has developed
OMNIgene® SPUTUM to liquefy and decontaminate
the sputum. This facilitates its transport without cold
chain for further diagnosis via microscopy, culture,
Xpert® MTB/RIF and other molecular diagnostic
protocols. prepl T® MAX technology from DNA Genotek
Inc. (Ottawa, Canada) enables release of nucleic acid
from MTBC cells via chemical lysis (3).
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PrimeStore Molecular Transport Medium®
(PS-MTM®) from Longhorn Vaccines & Diagnostics
(USA) provides a NAAT enabled solution to inactivate,
lyse and stabilize MTB DNA without cold chain. The
genetic material produced can be utilized for range of
other TB tests. PS-MTM® has further diversified into
range of products like PrimeSwab™ and PS-MTM®
for sample preparation, PrimeSwab™ and PS-MTM®
for DNA extraction (PrimeXtract™) and PrimeMix® for
real time PCR assay. Molzym GmbH & Co. KG (now
Molzym) has launched the MTB-DNA Blood kit (25 to
50 reactions) that removes excess human genomic
DNA and concentrates MTB DNA (3).

6. LATENT TUBERCULOSIS AND SKIN
TESTING

Tuberculosis may remain latent in an infected
patient before reactivation. This is one amongst
the most challenging aspect in TB diagnostics. The
advent of ELISPOT assay has provided promise to
test for latency. This test involves the quantification of
interferon production from whole blood or peripheral
blood mononuclear cells (PBMC) stimulated with
either purified protein derivative (PPD) or specific
antigens (17-19). Currently available QuantiFERON®-
TB Gold Test (Cellestis Ltd, WA, USA) for latent and
active TB utilizes ESAT-6 or CFP-10 antigens (absent
from BCG vaccine) (Table 4). Although the assay
got the FDA approval it is yet to be commercialized.
MPB skin patch test is another test with very high
specificity and sensitivity (20-21). This test is free from
reader bias, do not give false positive results due to
booster phenomena, free from the effect of prior BCG
vaccination and require only one patient visit to give
sample and get result (22) (Table 4).

6.1. Culture based drug resistance testing (DST)

Increasing global burden of TB has diversified
the diagnostic protocols for TB detection. Various
phenotypic methods that include nitrate reductase
assay (NRA / Griess method), thin-layer agar (TLA),
colour test (Color Test), microscopic observation
drug susceptibility assay (MODS), colorimetric redox
indicator (CRI) method and phage-based assays can
be directly set on the clinical samples and do not have
to undergo sample preparation like decontamination
process (2, 23-24). These methods can detect MDR-
TB including resistance to the second line drugs like
INH and RIF. Among different phenotypic methods
available, MODS is widely validated and has perfect
synergy with conventional drug susceptibility test
for INH, RIF and MDR-TB (100%, 97% and 99%).
MODS is rapid, economical and works well with all
types of primary clinical samples and isolates. MODS
depend on light microscopy. However, it requires a
requisite expertise that involves extensive manpower
training (25-27). The effectiveness of MODS for HIV
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Table 4. Culture based phenotypic assays

S.No. | Assay Manufacturer Method Material Advantage Disadvantage Sensitivity Specif city
% (95% CI) % (95% CI)
1. MODS MODS (Hardy DST Sputum Directly set on the Daily observation High High
diagnostics) clinical samples of culture, risk
and do not have of laboratory
to undergo sample | transmission,
preparation like requirement
decontamination of inverted
process, detect microscope,
MDR-TB including require extensive
resistance to the manpower training
second line drugs
like INH and RMP;
Handling risk is
entirely avoided,
Safer as performed
in closed system
2. NRA To be marketed | DST on LJ Sputum Simple to perform Culture time is 3-4 | High High
medium With with good results, times of MODS,
KNO, (ability inexpensive Require mature
of MTB to reagents, MTB culture
reduce nitrate advantage in to open to add
to nitrite) resource limited specific reagent
settings
3. TLA To be marketed | DST on solid Sputum Rapid, Accurate, Contamination Low Low
medium Standard rate is higher, data
microscope on DST is lacking
Required which is
Easily available,
cost effective
4. CRI To be marketed | Indirect, Sputum Less equipment Biosafety level High High
done on and infrastructu, 3 required,
MTB isolates Consumables additional staff
grown from that are readily skill
conventional available
culture
5. TKME DIU | Salubris Inc. Colorimetry Sputum Rapid, does Lack of Better High
M® SLC-L | USA not require automation, sensitivity
centrifugation Disadvantageous over LJ
step, no media in terms of turn- for MTB
preparation around time, detection
required, lower Future studies in
contamination differential settings
are required
6. Accuprobe | Gen-Probe Inc Chemilumi Sputum Simple and rapid, Labor intensive High High
nescent Readily available
acridinium In market,
ester-labelled Validated
(AE)-DNA
Probes (AE-
MAC) probe

co-infection is not yet established. Further, this test
is only approved for INH and RIF leaving other first
and second line TB drugs. TLA has also shown the
similar promise for the detection of MDR-/XDR-TB
colour test, MTB complex and resistance to INH, RIF
and ciprofloxacin (CFP) in cultures (27), details given
in Table 4.

TK MEDIUM® SLC-L (Salubris Inc. USA) has
developed a liquid media that provides an advantage
over conventional decontamination method using
sodium hydroxide and N-acetyl cysteine. It does
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not require centrifugation step thus completing the
whole process in around 25 minutes. It shows better
sensitivity over LJ for MTB detection (2) (Table 4).
Gonzalo et al (2014) (27) have used Biphasic media
assay (BMA) having two media L-J and Kirchner
medium in tubes with 66mg/ml of pyrazinamide (PZA)
to grow PZA susceptible and resistant strains of MTB
(27). Reproducible results have shown the majority
of starins to be susceptible to PZA while few were
resistant. BMA might be a useful low cost, culture
based alternative for DST for detecting PZA resistance
particularly where MDR-TB is prevalent.
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6.2. Phage amplification technique (PAT)

Phage Amplification Technique (PAT) is a
bacteriophage based test that can detect MTB in
sputum. Non-pathogenic mycobacteria (sensor cells)
are used as a negative control. The phage replicate,
infect and lyse the sensor cells leaving zones of
clearing (holes) in the agar conforming that sputum
contains MTB. This diagnostic protocol is rapid (2
days), sensitive, and requires less infrastructure.
However, it can only be applied to sputum samples
and requires expert manpower (28).

7. GENOTYPIC METHODS

Genotypic methods target the nucleic acid
of the mycobacterium. Ribosomal rRNA, which has
universal occurrence, abundance, and conserved
specific sequences can be a very useful genetic marker.
Accuprobe (Gen-Probe Inc) detection method targets
rRNA. This method can detect M tuberculosis complex, M
avium, M intracellulare, M avium complex, M gordonae,
and M kansasii. Accuprobe is simple and rapid with
accuracy around 90%. However, it covers a limited range
of species (Table 4). Peptide nucleic acids (PNA) based
assay provides another approach to differentiate M.
tuberculosis complex from NTM cultures®®. PCR based
restriction enzyme analysis of the hsp65 also provides
an economical alternative for mycobacterium detection
from culture. However, technique is complicated and
labor intensive (22,30). Similarly, sequencing 16sRNA
can also provide rapid detection of mycobacterium but it
is labor intensive (22, 31).

8. IMMUNOLOGICAL PROTOCOLS

Detection of antibodies like
lipoarabinomannans (LAM, cell wall component of
Mycobacteria), A60, 38Kd and 16 Kd against MTB is
a simple and economical method for EPTB detection.
However, inconsistency in results as covered by
meta-analyses and systematic reviews hampers its
commercialization (3,32-33).

Determine™ TB LAM Ag rapid assay (Alere
Inc.) is an immune-chromatographic strip that detects
LAM antigen in urine. Surprisingly, a ‘negative result’
does not rule out the possibility of TB. Test is also
vulnerable to ‘false positives’ due to contamination with
dust or faeces. For test to be accurate, the CD4 counts/
mm3 should not be less than 100 and best results are
obtained with CD4 counts around 200 counts/mm (3,
32-35). It detects NTMs in addition to MTBC along with
the site of mycobacterial infection (Table 5).

8.1. TB biomarker assays

The T-cell activation marker-tuberculosis
(TAM-TB) assay is a flow cytometry based protocol
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that detects fluorescently stained TB antigen-specific
CD4 T-cells counterstained with an antibody to CD127.
It measures the level of CD127 in the CD4 cells
challenged with TB antigens (36) (Table 5).

8.2. Interferon-Gamma Release Assays (IGRA)

This test utilizes the ability of MTB antigens
like Early Secretory Antigen Target 6 (ESAT-6) and
Culture Filtrate Protein 10 (CFP-10) to stimulate the
host for the production of interferon —gamma (IFN-y).
These antigens are absent in NTM or in BCG vaccine
hence can differentiate between latent TB infection,
BCG immunization and NTM infection. This procedure
is simple and rapid. The commercially available assays
for IFN-y are; the Quantiferon-TB Gold (Cellestis) and
T Spot-TB test (Oxford Immunotech). Intergam Rapid
Immuno Suspension Array, IRISA-TB (Antrum Biotech
Ltd, South Africa) detects IFN- y in pleural, pericardial,
ascitic, and cerebrospinal fluid. Testing IFN-y has
higher sensitivity for pleural TB detection as compared
to the Xpert MTB / RIF (8,37) (Table 5).

9. VOLATILE ORGANIC CHEMICALS (VOCs)

Analysis of metabolic pathways for TB
detection is another breakthrough in technology that is
rapid, safe and useful for TB diagnosis in children and
HIV patients. Maiga et al (2012) (6) have developed
Rabbit urease breath test to analyze the sensitivity and
specificity of urease based detection of M. tuberculosis
(6). This test involves administration of urea labeled
with isotope as substrate. Urea metabolized to ,,C-
CO, can be detected in exhaled breaths using IR
spectrometers. Signal shows good relation with
bacterial load that served well for diagnostic purposes
and treatment monitoring (6). The test is under clinical
trial to evaluate its efficacy.

BACTEC TB 460 radiometric system from
Becton Dickinson, Sparks, MD, USA facilitates rapid
detection of M. tuberculosis thus expediting evidence
based therapy (6). Liquid crystal display (LCD) based
TB Breathalyser from Rapid Biosensor Systems Ltd
takes less than 4 minutes to detect active TB bacilli
based on the MTB specific antigen in sputum and
gives output as TB positive or negative (2).

10. NUCLEIC ACID AMPLIFICATION TESTS
(NAAT)

PCR is commonly used for nucleic acid
amplification tests (NAAT). NAAT can detect single
copy of nucleic acid in a clinical sample. However,
presence of PCR inhibitors in samples can significantly
compromise the sensitivity. Also, processing of
samples may lead to the loss of nucleic acids (38-42).
This technique is further complemented by fluorescent
probe based detection or melts curve analysis,

© 1996-2019



Diagnostic approaches in tuberculosis

Table 5. Immunological biomarkers

S.N. | Assay Manufacturer Method Material Advantage Disadvantage Sensitivity Specif city
% (95% Cl) % (95% Cl)
1. Determine™ TB LAM | Alere Inc. Immunochromatographic | Urine Simple and Inconsistency in Increasd High
Ag Rapid assay strip economical results, negative when
method, detects result’ does not rule | combined
TBin HIV out the possibility with sputum
positive patients, | of TB, Test is also microscopy
EPTB, NTMs, vulnerable to ‘false
MTBC along positives’ due to
with the site of contamination with
mycobacterial dust or faeces, test
infection to be accurate, the
CD4 counts/mm?
should not be less
than 100
2. TB Rapid Screen Tashima One-step Blood Rapid, simple Limited to the High High
Inc Global Chromatographic and easy to use, | qualitative detection
BioDiagnostics, immunoassay, which Suitable to use Of antibodies to
USA, with FIND, | specifically detect in peripheral M. tuberculosis in
Switzerland the antibodies to laboratories, human serum and
Mycobacterum use low-cost plasma, Qualitative
tuberculosis in human fluorescence test, Negative
serum or plasma reader result does not
rule out TB, Need
confirmation from
other tests
3. TAM-TB assay Ludwig- Flow cytometry, Blood Quick and Need optimization High High
Maximilians fluorescently stained efficient for TB detection
University of TB antigen-specific diagnosis, in HIV kids and
Munich (LMU), CD4T-cells Paediatric TB reduced cost
Germany
4. Intergam Rapid Antrum Biotech Measures IFN-® in IFN-y In Rapid assay, Antigen- specific High High
Immuno Suspension Ltd, South Africa | pleural, pericardial, pleural, simple and T- cell IGRAs
array, IRISA-TB ascitic, cerebrospinal pericardial, flexible format were limited
fluid ascitic, and for simple or by suboptimal
cerebrospinal | multiple assays, accuracy and
fluid Test can be the inability to
manual or isolate sufficient
automated mononuclear cells
to perform the
assay
5. T-SPOT®TB Oxford ELISPOT / IGRA assay Blood Rapid, not Lower sensitivity for | High relative | High
Immunotec, UK influenced by patients with prior to TST relative to
previous BCG BCG, diagnostic TST
vaccination value of this test
in detecting active
TB approached
90% in sensitivity,
specificity, limitation
in detecting
pediatric TB
6. QuantiFERON®-TB Cellestis Ltd, ELISPOT assay ESAT-6 or Results are not Not tested for High High
Gold Test WA, USA CFP-10 subject to reader | infants, Kids,
bias, no booster | Pregnant women
phenomena
(i.e., increased
sensitivity on
subsequent test,
leading to false-
positive results),
prior BCG
vaccination and
require only one
patient visit

i.e. real time PCR (RT-PCR). PCR based protocol can
differentiate between wild type and mutated sequence.
Other methodologies include ligase chain reaction
(LCR), strain displacement amplification (SDA),
loop-mediated isothermal amplification (LAMP) and
transcription mediated amplification (TMA) (43-45).
These molecular techniques simultaneously detects
resistance genes as well, e.g. DNA probe and DNA
sequencing of MTB gene such as catalase (katG) or
RNA polymerase (rpoB).
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Mutations in katG and rpoB lead to the
resistance to INH and RIF respectively. NAAT based
methods are more suited for academic / research
purposes than for commercial clinical purpose.

10.1. Commercial NAATs based protocols
COBAS® TagMan® MTB Test (Roche

Diagnostics) is a RT-PCR based high throughput
detection protocol (100 samples/day) that targets the
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gene responsible for 16S RNA. This protocol requires
liquefied, decontaminated and concentrated human
respiratory samples like sputum and bronchial alveolar
lavages. This test is highly specific to the MTBC (2)
(Table 6).

The RealTime MTB from Abbott Molecular is
also an RT-PCR based assay. It can be interfaced with
fully automated DNA extraction platform. It detects
MTBC from sputum or bronchoalveolar lavage (46)
(Table 6).

GenoXtract®96 with the FluoroCycler® 96
from Hain Lifescience is a 96 well format extraction
and amplification platform provided with the the
GenolLyse® and FluoroLyse® for nucleic acid
extraction for LPAs or MTB assay (2). The Fluorotype®
MTB (Hain Lifescience) assay provides PCR based
amplification of MTBC DNA. The amplicons are
detected via molecular beacons and melt curve
analysis (47). Fluorotype® MDRTB is an improvised
version of Fluorotype® MTB that detects RIF and INH
resistance in addition to MTBC detection (2) (Table 6).

Hain Lifescience has also come up with a
multiplexed assay that detects MTBC and also RIF and
INH resistance like the previous case. This protocol
utilizes a novel PCR technique known as linear-after-
the-exponential (LATE) PCR coupled with ‘lights on’ or
‘light off’ probe technology for precise identification of
mutations. This protocol creates specific fingerprints
for each allelic variant of drug resistant mutations (48)
(Table 6).

Tosoh Bioscience (Japan) has developed
TRCRapid® MTB assay that targets MTBC 16S RNA.
The protocol includes amplification and transcription-
reverse transcription concerted (TRC) reaction (49).
NanoBioSys Inc. (Republic of Korea) has reported
a microfluidic chip (LabChip G2-3) based sample
processing and amplification protocol (2, 50). Detection
is via RT-PCR and takes approximately 30 minutes
(Table 6).

Seegene (Republic of Korea) provides a
highly multiplexed RT-PCR based NAAT assay. This
provides a range of Anyplex™ series of assays that
includes the Anyplex™ MTB/NTM for MTBC and
NTM; the Anyplex™ plus MTB/NTM/MDR-TB for
MTBC, NTM and genotyping RIF and INH resistance;
and the Anyplex™ |l MTB/MDR/XDR-TB that detects
MTBC, genotypes MDR via typing for INH and RIF
resistance alleles and also 13 alleles linked with XDR-
TB (7 alleles for FLQ and 6 for injectable drugs). This
platform detects MTBC and also XDR if the sample is
MTBC and MDR positive (50-51) (Table 6).

Xiamen Zeesan Biotech Co. Ltd (China) has
developed MeltPro® Drug-Resistant TB Testing Kits as
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RT-PCR enabled detection of resistant alleles to RIF
and INH. It is undergoing further refinement to detect
alleles resistant to ethambutol (EMB), streptomycin
(STR) and fluoroquinolones (FLQs) (52-53) (Table 6).

10.2. Xpert MTB/RIF assay for the diagnosis of PTB

Xpert® MTB/RIF (Cepheid, Sunnyvale,
CA, USA) is modular / single cartridge based NAAT
platform to diagnose MTB. It involves semi-nested
RT-PCR based amplification of rpoB and genotypes
RIF resistant alleles. Melt curve analysis of amplicons
generate fluoremetric fingerprints for five molecular
probes in real time, which discriminate allelic variant
in each probe region. This platform is accurate and
sensitive and suits to the requirement of low income,
limited resource set-up. This platform can process 16
to 1000 clinical samples (INFINITI® Xpert®). WHO
has approved Xpert® MTB/RIf for the diagnosis of
PTB, EPTB, HIV associated TB and TB meningitis in
adults and children (2) (Table 6).

Xpert MTB/RIF assay provides a rapid and
automated molecular test for pulmonary TB with the
sensitivity of 89%, and specificity of 99% (54). However,
this test is yet to be approved for the detection of
non-respiratory clinical samples (55). Truenat MTB
(Molbio Diagnostics, India) is a chip enabled RT-PCR
operated on a portable device. Results are out in an
hour. Nucleic acid is extracted from sputum utilizing a
nano-particle based procedure. It shows the specificity
similar to the Xpert MTB/RIF (56) (Table 6). EasyNAT
Diagnostic Kit detects MTB complex. It is an isothermal
amplification kit and results are qualitative in terms of
visual bands. For thinned and concentrated sputum
the sensitivity is comparable to culture on LJ medium
(57-58) (Table 6). The VereMTB assay (Veredus
Laboratories, Singapore) assay is more for academic
/ research purpose. It is a chip enabled platform and
combines PCR with microarray technology to detect M.
tuberculosis, Mycobacterium avium, Mycobacterium
intracellulare, Mycobacterium simiae / kansasii /
scrofulaceum, Mycobacterium abscessus / chelonae,
Mycobacterium xenopi, and M. fortuitum in addition
to RIF and INH (8,59) (Table 6). GeneXpert® Omni
Cepheid Inc. is a mobile operated device that uses
the cartridges already in use with the Xpert® platforms
(e.g. MTB/RIF). This platform offers miniaturized and
durable assay. It can store upto 20,000 results (2)
(Table 6).

10.3. Xpert MTB/RIF assay for the diagnosis of
extrapulmonary tuberculosis (EPTB)

Globally, PTB is more common as compared to
the EPTB, which is nearly 25% of all TB cases. However,
EPTB has higher prevalence in children and in HIV-
infected individuals (62-63). EPTB diagnosis is marred
with the lack of accuracy, pace and requisite expertise,
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which usually requires invasive procedures. Absolute
culture specificity can be achieved by complementing
the routine diagnostic protocols with antigen tests or
NAATs. In case of TB meningitis the low culture yield
can be enhanced in terms of sensitivity by replicating
the CSF examination or by complementing it with NAAT
(62-63). High performance liquid chromatography
(HPLC) based detection of tuberculostearic acid in
CSF is highly sensitive but requires expert manpower
and costly laboratory set up (22,64).

10.4. Semi-automated NAATSs for use in peripheral
laboratories

The biggest challenge in  molecular
diagnostics of TB is to shift the set up from the higher
tier laboratory to the peripheral laboratories. This may
represents a diversity of issues that may range from
the availability of sufficient infrastructure, robustness of
equipment, reagent stability, user expertise in addition
to improved performance over SSM (65-66). Four
different platforms like the Loopamp™ MTBC assay
from Eiken (Japan); Genedrive® MTB assay from
Epistem (UK); Truelab™ RealTime micro PCR System
from Molbio Diagnostics (India); and the EasyNAT™
TB assay from Ustar Biotechnologies (China) are
sighted with potential for delivery (2).

Eiken’s Loopamp™ MTB provides a (LAMP)
based amplification assay with better sensitivity over
SSM. This assay involves manual preparation of
samples which are subjected to RT-PCR. Genedrive®
MTB assay provides for MTBC diagnostics only with
future plan of including genotyping MDR-TB through
RIF resistance. This assay involves manual preparation
of samples followed by RT-PCR. Truelab™ RealTime
micro PCR involves semi automated DNA extraction
and amplification for MTBC detection. Truelab™
QUATTRO is an improvisation over Truelab™
RealTime micro PCR in being fully automated and
integrated system. EasyNAT™ TB suits to the limited
resource set up of peripheral laboratories requiring,
centrifuges, water bath etc to perform the assay (2)
(Table 6).

Alere™ q platform is highly integrated and
automated NAAT for diagnosis and assessing the
viral load of HIV-1 and 2 (67). It is a cartridge based
system, where cartridge is equipped with the reagents
to liquefy and inactivate the sample. This is followed by
extraction of MTBC-DNA and amplification. This assay
involves nicking enzyme amplification reaction (NEAR),
an isothermal amplification of TB-DNA (2) (Table 6).

GenePOC Diagnostics (Canada) offers an
automated platformthatuses RT-PCR and fluorescence
detection for TB diagnostics (2). TBDx system from
Keck Graduate Institute (KGI; USA) provides a low
cost instrumentation where all process starting from
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sample processing occurs on single cartridge platform.
Nucleic acid preparation is simplified as it does not
require chaotropic salts and organic solvents (2).
The Northwestern Global Health Foundation (USA) in
partnership with Quidel Inc. (USA) is coming up with
an integrated MTBC assay. The assay involves lysing
MTBC cells via heat block followed by purifying DNA
using immiscible oil interface (68) (Table 6).

Point-of-Need  (PON)  Qiagen  offers
isothermal nucleic acid amplification assay for the
detection of PTB and MDR-TB. Q-POC™ platform,
under development from QuantuMDx (UK) offers
diagnosis for PTB. The assay involves coughing
the sputum in a cup that contains reagents for its
liquification and decontamination. This is followed by
concentration of MTBC cells via paramagnetic bead
concentration step and quick nucleic acid amplification
(4 minutes) via isothermal asymmetric PCR (2).

EOSCAPE-TB System from Wave 80
Biosciences (USA) offers detection of MTBC via
genotyping RIF and FLQ resistant alleles. Using this
platform multiple tests can be run in parallel and single
analyzer generates results that can be used with
multiple processors (2) (Table 6).

PCR (XCR™) assay from Fluorocentric Inc.
(USA) offers a RT-PCR based assay that works via
proprietary primer design algorithms. It is powered by
a battery operated device for rapid amplification (10
minutes) and real time detection of individual XCR™
assays (2) (Table 6). Co-diagnostics (USA) and Thisis
(a spinoff company from Boston University School of
Medicine, USA) offers a RT-PCR based platform for
detection of MTBC via 16S RNA gene. This platform
can be integrated with variety of other RT-PCR
platforms. It is claimed to detect MTBC at LOD of 4 cfu
and can genotype MTBC into five geno-groups using
totally optimized PCR (TOP) (Table 6). Scanogen,
though not strictly a NAAT assay detects MTBC
specific DNA from body fluids using single molecule
scanning technique without PCR amplification. This
platform claims to have minimum background noise
and maximum specificity in its output (2).

10.5. Spoligotyping

Spoligotyping is very useful technique in
providing epidemiological information on the causative
strain. It utilizes amplification of polymorphic direct
repeat sequences in M. tuberculosis genome. Higher
cost of laboratory infrastructure and requirement of
trained expertise are biggest limitations (5,69).

10.6. Line Probe Assay (LPA)

LPAs or reverse blot hybridization assays are
a relatively low-cost tool and have been developed
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for a variety of areas around MTB diagnostics,
including MTBC-specific assays, speciation of NTMs
and assays that genotype first or second-line drug
resistance alleles. DNA extraction can be manual
or automated and DNA is amplified by asymmetric
PCR to create a population of biotin-labelled single-
stranded (ssDNA) amplicons. Oligonucleotide
capture probes with sequences specific to the target
amplicons are printed as an array of stripes on a
nitrocellulose strip. The amplification mixture is then
exposed to a strip under conditions to optimize the
specific hybridization of amplicons to their sequence
match probe printed on the nitrocellulose. Detection
of hybridization of amplicons to the probe stripe is
achieved via a streptavidin-linked enzyme that creates
a colorimetric reaction visualized as defined stripes
that corresponds to the presence of TB and a sensitive
or resistant genotype (22). The developed LPAs are
read manually with comparison to a printed score chart
or can be scanned and automatically analysed by
attendant software. The methodology requires open
tubes containing amplified DNA, which has potential
to contaminate the workspace thus compromising all
future test data. The automated workstations alleviate
this to some degree by providing controlled conditions
that contain reaction mixtures (2).

Commercially available LPAs for the
detection of TB, MDR/XDR-TB are: INNO-LiPA Rif. TB
(Innogenetics, Belgium) for RIF, GenoType®MTBDR/
MTBDRplus for RIF and INH and Geno-Type®
MTBDRs/ (both Hain Lifescience, Germany) for
FLQ, injectables, second line drugs and ETM (22).
INNO-LiPA Rif. TB is highly sensitive when isolates
from culture are used. However, the accuracy goes
down when it is applied directly on clinical samples.
GenoType®MTBDR/MTBDRplus can be applied for
both culture isolates and clinical samples. GeneXpert
MTB/ RIF utilizes heminested RT-PCR to amplify
specific sequence of the rpoB gene of M. tuberculosis.
The amplicons are then probed with molecular beacons
for mutations within RIF resistance determining region
(6, 70-72) (Table 2).

MTBDRsl v1.0. and MTBDRsl| v2.0. can
detect resistance to FLQ, KAN, STR and XDR-TB.
MTBDRsI v2.0. is equipped with 27 probes to detect
resistance to second line drugs and also targets new
gene regions for improved detection of FLQ and
KAN (73). LPAs show high sensitivity and give better
results when TB culture or SSM positive samples are
used as a substrate (Table 2). These are economical
when compared to culture based DST (3). However,
it is practically impossible to determine accurately
resistant genotypes for many drugs like pyrazinamide
(PZA). Silent mutations in drug sensitive strains can be
misinterpreted as drug resistance leading to avoidable
treatment regimens (2).
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10.7. Microarray-based platforms

Microarray based platforms acts as portable
LPA. Microarrays have high potential for MTB
diagnosis, speciation to analyze variation in drug
resistant alleles. The probes utilized in microarray
can be printed as defined spots and due to their small
size more spots can be printed to analyze amplified
DNA. The INFINITI® PLUS Analyzer platform from
Autogenomics is one such platform. INFINITI® High
Throughput System (HTS) and MDR-TB BioFilmChip®
for the detection of MTBC and first-line drug (RIF, INH
and PZA) are high-throughput array based platform
(Table 3). CapitalBio has launched twin microrray
based platforms, i.e. Mycobacterium Identification
Array Kit for MTB diagnostics and NTM speciation
and Drug Resistance Detection Array Kit for MTBC
diagnosis and for genotyping RIF and INH resistance
(2, 74) (Table 3).

The TruArray® MDR-TB microarray is
fluorescent probe based single tube multiplexed
asymmetric PCR reaction. It can detect MTB and M.
avium along with resistant alleles to RIF and INH (2).
VereMTB™ Detection Kit from Veredus Laboratory is
solely for research purpose. This array based platform
can detect MTBC through /IS6770. In addition the array
can detect MTBC, speciate eight NTMSs (M. avium, M.
simiae, M. intracellulare, M. Kansasii, M. abscessus,
M. scrofulaceum, M. chelonae, M. xenopi) and probe
alleles associated with RIF and INH resistance (74)
(Table 3).

HYDRA 1K developed by Stanford University
(USA) together with Insilixa Inc. (USA) is an array
based platform to detect PTB MDR / XDR-TB through
the genotyping of mutations. This uses complementary
metal-oxide semiconductor (CMOS) technology
for digital imaging on the array. PCR amplification
happens in the array area so that binding with amplicon
with probes is measured in real time that saves lot
of time and energy. CMOS enables this platform to
have melt curve analysis of amplicon binding at each
probe spot. It is developed to detect PTB, MDR/
XDR-TB. However, higher cost of instrument and
other peripherals makes this technique less likely to
commercialize (2, 74) (Table 3).

11. WHOLE GENOME SEQUENCING

Whole genome sequencing (WGS) is
recently applied to analyze molecular evolution of
M. tuberculosis Beijing strain and appearance of
an lIberico-American strain in Tibet. WGS provides
greater resolution when compared to mycobacterial
interspersed repetitive unit-variable-number tandem
repeats (MIRU-VNTR, the existing protocol for
molecular genotyping of circulating strains) (75-77).
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Table 2. Line probe assay (LPA)

S.No. | Assay Manufacturer | Method Material Advantage Disadvantage | Sensitivityy | Specificity
% (95% Cl) | % (95% CI)
1. INNO-LiPA Rif. TB Innogenetics, | LPA Sputum Economical, Accuracy goes | Highly High
Belgium reliable, widely down when sensitive
applicable it is applied when
assay, valuable directly on the | isolates
tool for routine clinical sample | from the
diagnostics, culture are
simple, rapid used
2. GenoType®MTBDR/ Hain Life LPA Sputum, Can be applied Contaminate High Modest and
MTBDR + Sciences, broncho- for both culture the work variable
Germany alveolar isolates and space, may
lavage, clinical samples have the
bronchial potential to
aspirate, compromise
pleural all future test
effusion, data, cannot
lymph node be used for
sample direct testing
of smear
—negative
paucibacillary
sputum
samples
3. GenoType®MTBDR sl | Hain Life LPA Sputum Can be applied Contaminate Highly High
Sciences, for both culture the work specific tool
Germany isolates and space, may for XDR
clinical samples, have the detection
sensitive potential to in direct
detection, compromise specimens
efficient all future test for HIV co-
diagnosis, data, further infected TB
flexible research is patients
processing, required on
efficient results test accuracy
in different
settings,
cannot be
used to rule
out XDR-TB
4. LiPA pyrazinamide Nipro LPA Sputum/ High throughput, | Automated High High
culture identify the sequencing
based major clinical is required
isolates of for which
Mycobacterium there is no
species, detect LiPA probes,
mutations modern
associated with molecular
resistance to instrumental
INH, RIF, PZA set-up is
and FQ, rapid, required
reliable detection
of DR-TB NTM
5. REBA MTB-MDR YD- LPA revere Sputum Rapid detection Underestimate | High High
Diagnostics hybridization of RIF, INH, FQ, | the true
assay +SLID, simple, number of
economical, no resistant
costly equipment | strains
is required because of
limitations of
knowledge
regarding
the limited
knowledge
regarding
the genotype
markers
of drug
resistance
50 © 1996-2019
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Table 3. Microarray based diagnostic platforms

S.No. | Assay Manufacturer | Method Material Advantage Disadvantage Sensitivity, | Specif city, %
% (95% CI) | (95% CI)
1. INFINITI® Autogenomics | Microarray Clinical High- Can only be NA NA
PLUS platform samples throughput used with human
array, high nasopharyn
performance geal aspirates,
genetic marker | negative results
detection with do not preclude
varying options | infection
in automation
and throughput
2. VereMTB Veredus PCR-Micro Sputum / Rapid More for High High
assay Laboratories, array culture based | detection, academic /
Singapore differentiation, Research
identific ation purpose
of MTBC,
Resistance to
RIF, INH non-
MTBC species,
diagnosing
patients after
treatment
failure and
relapse
3. VereMTB™ Veredus Array based Sputum / Detect MTBC, Research High High
Detection Kit | Laboratory platform culture based | speciate eight purpose only
NTMSs
4. HYDRA1K Stanford Array based Sputum / Miniaturization Higher cost of NA NA
University platform culture based | Saves time and | instrument
(USA) together energy
with Insilixa
Inc. (USA)
5. TruArray® Akonni Fluorescent Bacterial Minitaurize, Research High High
MDR-TB Biosystems probe based culture / Bench top purpose only
microarray Single tube sputum test, single
multipled integrated work-
asymmetric flow approach,
PCR reaction accurate, rapid,
broad coverage
and field ready
6. Twin CapitalBio Mycobacterium | Clinical Both MTC Infrastructure High, High,variable
Microrray identification specimens and NTM and trained variable for | For different
array kit for rapid system, personnel different clinical
MTB, NTM sensitive, required reduces | clinical specimens
speciation, reliable, its clinical utility specimes
drug fast, spinal in poverty-
resistance, tuberculosis stricken zones,
MTBC Additional large-
diagnosis, scale studies
genotyping are needed
RIF, INH to evaluate
resistance its diagnostic
performanc
in spinal
tuberculosis

QlAxel automated genotyping system from
Qiagen provides high-throughput genotyping of MTBC
hence providing epidemiological informations like
prevalence or introduction of a particular genotype.
This protocol targets variable sized regions of MTB
genomic DNA using

MIRU-VNTR approach. This platform is
further improvised to detect RIF and INH resistant
alleles (80-81).
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Unlike other bacterial pathogens that require
drug resistance through plasmid acquisition, transposon
or phage mediated elements, M. tuberculosis acquire
drug resistance through chromosomal mutations
particularly, single-nucleotide polymorphisms (SNPs)
(80-81). This makes identification of drug resistant
alleles difficult particularly for those lying outside of
drug resistant hotspots, e.g. RIF resistance-determining
region for RIF or the alleles that lie outside of rpoB and
associated with resistance (77). Newer approaches
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to detect drug resistance using Next-generation-
sequencing (NGS)involves PZAresistance via deletions,
STR, INH and screening allelic variation associated with
resistance to novel drugs (80,82-85). NGS is very useful
in determining whether the case of relapse is because
of infection with new strain or incomplete treatment (86).
WGS is already applied to the patients with MDR-TB
(87-88). McKinsey has even listed NGS as one of the
12 technologies that will transform our lives.

11.1. New sequencing protocols

MiSeq from lllumina, USA facilitates
focused applications like targeted gene sequencing,
metagenomics, small genome sequencing, targeted
gene expression, amplicon sequencing and HLA typing.
Only 10ng of DNA s required as starting material. MiSeq
gives output of 15 Gb with 25 M sequencing reads of
2x300 bp read lengths). Personal Genome Machine®
(PGM™) System (Life Technologies Incorporated;
USA) is the conjugation of semiconductor sequencing
technology with natural biochemistry to provide real-
time chemical information as digital data in less than 3
hours. This technique is accessible to all kind of set-ups.
Use of simple natural sequencing chemistry eliminates
the requirement of costly optics and complicated
chemistries to measure DNA extension. 454 FLX Junior
(Roche Diagnostics; Switzerland) provides rapid and
robust platform to sequence and assembly genome of
any size without the need for supplementary Sanger
data. It provides the output having double (1000 bp) the
read length of the Titanium kits, hence an improvisation
over current GS FLX. The applications like transcriptome
and amplicon sequencing enable an all inclusive picture
of gene space of organisms. GeneReader from Qiagen
can complement available protocols for resistance
determination. It can detect allelic variants at 1% allelic
frequency. Data from liquid biopsy pipeline show 100%
conformity with PCR-based variant detection methods.
GnuBIO from Bio-Rad Laboratories is a novel low cost
desktop sequencer. It comes up with a highly integrated
platform that incorporates all the functions of DNA
sequencing like target selection, DNA amplification,
DNA sequencing and analysis into a single, integrated
system. Single user interface with single step process
ensures rapid genomic results in hours. GridlON™ and
the Min- ION™ from Oxford Nanopore Technologies,
UK facilitates rapid assembly of genome data fora MDR
isolate, which elucidates the distribution and underlying
mechanism of drug resistance. It enables the selection
of specific DNA molecules for sequencing by reversing
the driving voltage across individual nanopores (89).

12. ASSAYS BEING DEVELOPED /
EVALUATED UPCOMING/PIPELINE
TECHNOLOGIES

There is a co-evolution of sort between
TB bacilli invading to newer regions and newer
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techniques / protocols as a counter offensive. Many
such existing protocols are improvised and upgraded
in response to the challenges and threat posed by
rapidly emerging and evolving drug resistant TB bacilli.
Following protocols / platforms are under development
to spearhead the fight of humanity against TB:

Acombine of nano-and biosensing technology
is being evaluated for its use as a portable, rapid on-
the-spot biosensor for MTB detection. For instance,
detection of trans-renal DNA opens up new avenues
for TB detection at molecular level. This technique is
not yet commercialized due to the problems in the
development of TB detection / readout assays.

High-resolution melting (HRM) curve analysis
coupled with closed-tube RT-PCR provides a good
screening method with a positive predictive value
(PPV) of 100% and negative predictive value (NPV) of
99.9.%, for high throughput screening of large number of
specimens in any TB laboratory. Improvized amplification
techniques in conjunction with ‘molecular beacon’
approach (LATE-PCR) offer future advancements,
particularly in drug resistance analysis (90-91).

IR spectrophotometer based detection of
isotopic urea in exhaled breath is another future
technique that holds promise. It utilizes MTB urease
as a bacterial virulence factor (6).

A biophotonic detection platform is being
developed that utilizes reporter enzyme fluorescence
to detect B-lactamase produced by MTB. This
innovative technology is now being adapted for point
of care (POC) use.

Becton Dickinson is in the process of
designing an automated platform that will do the
staining of AFB in sputum in addition to imaging.
This platform will provide the sensitivity similar to
the fluorescent microscopy at the rate of processing
around 40 slides per day with slide scanning algorithm
for scoring (2).

Xiamen Zeesan Biotech Co. Ltd (China) has
developed MeltPro® Drug-Resistant TB Testing Kits
as RT-PCR enabled detection of resistant alleles to
RIF and INH. It is undergoing further improvisation
to detect alleles resistant to ethambutol (EMB),
streptomycin (STR) and fluoroquinolones (FLQs) (52-
53, 92).

Genedrive® MTB assay is upgraded to
include genotyping MDR-TB through RIF resistance
in addition to MTBC diagnosis. This assay involves
manual preparation of samples followed by RT-
PCR115 (93-94).

The Northwestern Global Health Foundation
(USA) in partnership with Quidel Inc. (USA) is coming
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up with an integrated MTBC assay. The assay involves
lysing MTBC cells via heat block followed by purifying
DNA using immiscible oil interface (68).

Q-POC™ platform, under development from
QuantuMDx (UK) offers diagnosis for PTB.

The assay involves coughing the sputum in
a cup that contains reagents for its liquification and
decontamination. This is followed by concentration of
MTBC cells via paramagnetic bead concentration step
and quick nucleic acid amplification (4 minutes) via
isothermal asymmetric PCR (2).

Tangen Biosciences Inc. (USA) is going to
launch a fully integrated TB detection platform. This
platform will have provision for sputum collection
in a cup to capture MTB cells followed by lysis and
isothermal amplification via LAMP. It comes up with the
storage capacity of 10,000 results (2).

13. CONCLUSIONS

Accurate and timely diagnosis of TB is the
only requirement for its control and management.
Currently, TB diagnosis and treatment is plagued by
factors, like inability to diagnose correctly latent and
active TB; lack of precise diagnostic protocols for EPTB,
pediatric TB and TB associated with HIV; prolonged
diagnostic protocol aggravating the otherwise
curable infection and escalating it to MDR/XDR-TB;
absence of readily available testable biomarkers;
Inaccessibility to the POC diagnostic facilities in the
peripheral laboratories. These are further challenged
by the rapidly emerging resistant strains of TB bacilli
in the regions where it is thought to be eradicated or
where it was non -existent historically. Need of the
hour is the tools and techniques that are accessible,
accurate, rapid, economical and most importantly
rapid as time lag in diagnosis aggravates the infection.
Although TB diagnostics have seen tremendous
upsurge in the newer technologies and protocols
from imaging, molecular NAAT based, immunological,
culture based phenotypic methods, array based to
genome sequencing protocols. Unfortunately, they
offer promise in some aspect but lack or have severe
limitation in other aspects, which limits their applicability
on ‘one -shoe-fit-all’ basis. Another, problem with
newer protocols is the reluctance of user groups to
embrace it either due to lengthy approval mechanism,
lack of WHO approval in Toto or simply the cost and
expertise involved. There is urgent need to evolve
the mechanism to accept the newer protocols on the
emergency basis. As an extension to the problem,
many small companies with promising diagnostic kits
(in terms of good performance on heterogeneous
set-ups) do not have sufficient funds to market their
products or scale up their production. Also, most of
the newer technologies are accepted in the developed
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countries but there is a need to evolve the technologies
compatible to the requirement of resource limited
developing countries. There is a dire need of all
inclusive diagnostic protocols with applicability in wide
spectrum of patients and set-ups with high sensitivity
and specificity. A dynamic understanding of existing
and forthcoming technologies is key in facilitating
access to appropriate TB diagnostic tools through
market-based interventions. As such, this review is
intended to be a living document, updated as the TB
diagnostics market evolves, to highlight potential.
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