Hepatobiliary transporters in the pharmacology and toxicology of anticancer drugs

Jose J.G. Marin¹, Oscar Briz², Maria J. Perez², Marta R. Romero¹, Maria J. Monte¹

¹Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), ²Research Unit, University Hospital, University of Salamanca, CIBERehd, Spain

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Hepatobiliary transport of anticancer drugs
 3.1. Transports involved in the liver uptake of antineoplastic drugs
 3.1.1. OATPs (SLCO family)
 3.1.2. NTCP and ASBT (SLC10A family)
 3.1.3. OATs (SLC22A family)
 3.1.4. OCTs and OCTNs (SLC22A family)
 3.1.5. Nucleoside transporters CNTs and ENTs (SLC28 and SLC29 families)
 3.1.6. Other transport systems involved in the uptake of antineoplastic drugs
 3.2. Transports involved in the export of anticancer drugs by liver cells
 3.2.1. The ABCA family
 3.2.2. The ABCB family
 3.2.3. The ABCC family
 3.2.4. The ABCG family
4. Changes in the function of biliary transports induced by interactions with anticancer drugs
 4.1. Drug-drug interactions
 4.2. Drug-nutrient interactions
 4.3. Interactions between drugs and endogenous compounds
5. Effect of anticancer drugs on the expression of hepatobiliary transporters
6. Expression of hepatobiliary transporters in tumors of the enterohepatic circuit
7. Targeting of cytostatic drugs using hepatobiliary transporters
8. Acknowledgment
9. References

1. ABSTRACT

The existence of carrier proteins located in the basolateral and apical membranes of hepatocytes, cholangiocytes and epithelial cells of the ileal mucosa, together with their more or less broad substrate specificities-implying their ability to transport many different drugs, including anticancer drugs-has important pharmacological repercussions. These vary from the existence of interactions of drugs with endogenous and xenobiotic substances to the possibility of using these transporters in the targeting of drug delivery systems, which can be useful either to direct anticancer drugs towards tumors located in the hepatobiliary system or to facilitate their hepatobiliary excretion. This justifies the growing interest in bile acid derivatives as targeted pharmacological tools, in general, and in anticancer chemotherapy, in particular. Moreover, interactions of antitumor drugs with hepatobiliary transporters may account for the appearance of toxic side effects associated with the use of these drugs. The present review covers these aspects of the pharmacology and toxicology of hepatobiliary transport systems in relation to anticancer drugs.

2. INTRODUCTION

The elimination of drugs by the liver is the result of a series of complex events that include uptake across the sinusoidal membrane of hepatocytes (phase 0 of the detoxification process). In some cases, this is followed by intracellular biotransformation, either by oxidoreduction reactions (phase I), or conjugation with polyatomic groups (phase II). Phase III processes involve the extrusion of native or biotransformed compounds across the canalicular membrane into the bile (phase IIIa) or, alternatively, across the sinusoidal membrane back into the blood (phase IIIb), which, for instance in cholestasis, may become a major pathway for exporting towards the kidney compounds that must be detoxified and eliminated from the body.

3. HEPATOBILIARY TRANSPORT OF ANTICANCER DRUGS

In the liver, phase 0 is accounted for by sodium-independent transporters of organic anions and cations as well as by very efficient sodium-dependent systems.
Regarding phase IIIa, there are several ATP-dependent mechanisms that account for the biliary secretion of anticancer drugs, whereas ATP-dependent and -independent systems account for phase IIb, i.e. the transfer of anticancer drugs from cells towards the blood. These carriers are also involved in the transport of endogenous substances, such as bile acids, biliary pigments, nucleotides, nucleosides, steroid hormones and their metabolites, etc.

Table 1. Carriers involved in the uptake and export of anticancer drugs by parenchymal liver cells

<table>
<thead>
<tr>
<th>Group</th>
<th>Typical compounds</th>
<th>Action mechanism</th>
<th>Uptake Carrier (Reference)</th>
<th>Export Pump (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen mustards</td>
<td>Chlorambucil, Melphalan</td>
<td>Alkylation agents</td>
<td>SLC7A5 (Melphalan; 55,56,57)</td>
<td>MRP1 (101) MRP2 (Chlorambucil; 93)</td>
</tr>
<tr>
<td>Oxazaphosphorines</td>
<td>Cyclophosphamide, Ifosfamide</td>
<td>Alkylation agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acyclic nucleoside</td>
<td>Adefovir, Cidofovir</td>
<td>Antimetabolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphonates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptides</td>
<td>Methotrexate</td>
<td>Antimetabolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purine-base analogs</td>
<td>6-Mercaptopurine</td>
<td>Antimetabolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiopurines</td>
<td>Thioguanine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrimidine-base analogs</td>
<td>Flavouracil, Gemcitabine</td>
<td>Antimetabolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea derivatives</td>
<td>Hydroxyurea</td>
<td>Antimetabolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxoids</td>
<td>Paclitaxel</td>
<td>Antimitotic agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinca alkaloids</td>
<td>Vincristine, Vinblastine</td>
<td>Antimitotic agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum compounds</td>
<td>Cisplatin, Oxaliplatin</td>
<td>Cross-linking reagents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Flavopiridol</td>
<td>Cyclin-dependent kinase inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stilbenes</td>
<td>Tamoxifen</td>
<td>Estrogen receptor modulators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycopeptide antibiotics</td>
<td>Bleomycin</td>
<td>DNA-damaging agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoacridines</td>
<td>Amscarine</td>
<td>Intercalating agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracyl hydrazones</td>
<td>Bisantrene</td>
<td>Intercalating agents</td>
<td></td>
<td>MDR1 (76) BCRP (121)</td>
</tr>
<tr>
<td>Anthracyclines</td>
<td>Doxorubicin</td>
<td>Intercalating agents</td>
<td>SLC22A16 (42) Non carrier-mediated (58, 59)</td>
<td>ABCG2 (62) MDR1 (66) MRP1 (104) MRP2 (97) MRP6 (113) BCRP (123,134)</td>
</tr>
<tr>
<td>Anthraquinones</td>
<td>Mitoxantrone</td>
<td>Intercalating agents</td>
<td>OCT1 (33) Non carrier-mediated (59)</td>
<td>MDR1 (75) MRP1 (102) BCRP (123,134)</td>
</tr>
<tr>
<td>Camptothecin analogs</td>
<td>Irinotecan, Topotecan</td>
<td>Topoisomerase I inhibitors</td>
<td>OATP1B1 (Irinotecan; 9)</td>
<td>MDR1 (77) MRP1 (103) MRP2 (98) MRP4 (108) BCRP (135,136)</td>
</tr>
<tr>
<td>Podophyllotoxins</td>
<td>Etoposide, Teniposide</td>
<td>Topoisomerase II inhibitors</td>
<td></td>
<td>MDR1 (68) MRP1 (104) MRP2 (97) MRP3 (109) MRP6 (113) BCRP (137)</td>
</tr>
<tr>
<td>2-Phenylamino pyrimidines</td>
<td>Imatinib</td>
<td>Tyrosine kinase inhibitors</td>
<td>OCT1 (41)</td>
<td>MDR1 (78) BCRP (138)</td>
</tr>
</tbody>
</table>

3.1. Transporters involved in the liver uptake of antineoplastic drugs

The basolateral transport proteins belonging to the gene superfamily of solute carriers, SLC, play a primordial role in the uptake of anticancer drugs by liver cells. Table 1 summarizes the transport systems that have been reported to be involved in the uptake of these compounds, classified according to their chemical structures and mechanisms of action.

3.1.1. OATPs (SLCO family)

An important role in the liver uptake of drugs is played by members of the organic anion transporting polypeptide (OATP) family, whose gene symbol was initially designated SLC21A, but was latter renamed as SLCO (1). The isoforms expressed in human hepatocytes are OATP-A/1A2, OATP-B/2B1, OATP-C/1B1 and OATP8/1B3 (2). The natural substrates of these transporters include several organic anions, such as bile acids, conjugated bilirubin (3), unconjugated bilirubin (4), as well as some neutral steroids and bulky type-II cations, such as quinidine. Although all isoforms share some substrate specificity, there are also peculiarities for each transporter in regard to this characteristic. Thus, OATP-C/1B1 is quantitatively the most important transporter involved in sodium-independent bile acid uptake by the liver. In contrast, OATP-B/2B1 is not able to transport bile acids (5). Although OATP-A/1A2, when expressed in Xenopus laevis oocytes is able to transport bile acids, owing to the very low expression of this protein in normal liver cells (2,6), its role in this function is probably minor as compared to those played by OATP-C/1B1 and the sodium-taurocholate cotransporting polypeptide NTCP (gene symbol SLC10A1).

Regarding anticancer drugs (Table 1), OATP-A/1A2 (7) and OATP8/1B3 (8) are able to transport the antimitobole methotrexate, whereas 7-ethyl-10-hydroxycamptothecin (SN-38), an active metabolite of irinotecan, is a substrate for OATP-C/1B1. Thus, genetic polymorphisms in this transporter might contribute to the
well-known interindividual variability regarding the bioavailability of this topoisomerase inhibitor (9). OATP8/1B3, but not OATP-C/1B1, is able to transport paclitaxel with high affinity. However, it has not been possible to establish an association between the most frequent polymorphisms in the SLC01B3 gene, and the variations in the pharmacokinetics of this taxoid (10,11). Finally, it has been reported that Oatp2/1a4 is involved in the transport of the antimitabolite hydroxyurea across the guinea-pig blood-brain barrier (12).

3.1.2. NTCP and ASBT (SLC10A family)

Members of the SLC10A gene family, such as the liver-specific NTCP, are able to carry out bile acid transport very efficiently (13,14). In particular, NTCP takes up bile acids across the sinusoidal membrane of hepatocytes with a stoichiometry of two Na⁺ ions per molecule of bile acid, thanks to the sodium gradient maintained by Na⁺,K⁺-ATPase, located in the same membrane. NTCP is the main transporter accounting for the liver uptake of conjugated bile acids (e.g., taurocholate, tauroursodeoxycholate and taurocholenedoxycylate), but it is also able to transport, although with less efficiency, non conjugated bile acids (e.g., cholate), as well as other non-bile acid compounds, such as sulfated steroids (e.g., dehydroepiandrosterone sulfate and estrone sulfate), bromosulfophthalein and thyroid hormones (15,16).

Another member of this family of transporters, the apical sodium-dependent bile acid transporter (ASBT, gene symbol SLC10A2), is expressed in the apical membrane of cholangiocytes. This transporter is not liver-specific; the expression of ASBT has been also detected in the apical membrane of epithelial cells of the ileum of the hamster (17), rat (18), and humans (19), and of the proximal tubule in the kidney of rats (20) and humans (21).

Despite the fact that to date no anticancer drug has been reported to be a substrate of SLC10A transporters, these carriers are relevant for the issues addressed in the present review. This is because owing to their high efficiency in bile acid transport they are good candidates for use in drug targeting toward the liver (using NTCP) or intestine (using ASBT), as will be commented below. NTCP is able to transport chloramphenicol if this is conjugated with taurocholate (22). Similarly, NTCP has been reported to transport several cisplatin-bile acid derivatives (23).

3.1.3. OATs (SLC22A family)

Anticancer drugs with very different mechanisms of action (Table 1) are substrates for the organic anion transporters (OATs) of the SLC22A family of genes (for a review, see 24). The first member of this family to be cloned was OAT1 (SLC22A6), which is expressed mainly in the kidney; specifically, in the basal membrane of proximal tubule epithelial cells. The isoforms OAT2 (SLC22A7), OAT4 (SLC22A11) and OAT5 (SLC22A19) are present in human liver (25). Indeed, OAT2 is predominantly expressed in the basal membrane of hepatocytes (26). It has been suggested that under physiological circumstances these transporters might play a role as export pathways, permitting the sinusoidal extrusion of compounds exported by the liver (27).

Several members of this family are able to transport methotrexate, such as the hepatic isoform OAT2 (25), but also OAT1, OAT3 and OAT4 (28). Other anticancer drugs that are substrates of OAT2 include 5-fluorouracil and paclitaxel (29). There is also evidence that OATs may be involved in determining the bioavailability of raloxifene, a drug used as a chemopreventive agent for breast cancer owing to its activity as a selective modulator of estrogen receptors (30).

OATs are also involved in transport of antineoplastic drugs in other tissues. For example, the rat isoform Oat3 has been reported to be involved in the transport across the blood-brain barrier of 6-mercaptopurine as well as other thiopurines (31). The cytotoxicity of the nucleotide analogs adeovir and cidovir is enhanced in cells transfected with the renal isoform Oat1, suggesting that this carrier plays a role in the nephrotoxicity associated with treatments based on these antiviral agents (32).

3.1.4. OCTs and OCTNs (SLC22A family)

Organic cation transporters (OCTs) also belong to the SLC22A family. They carry out the Na⁺-independent electrogenic transport of small cations (type I), such as tetaethylammonium (for a review, see 33,34). Three isoforms have been identified in humans: OCT1, OCT2 and OCT3 (SLC22A1, SLC22A2, SLC22A3, respectively). OCT1 is expressed in the basolateral membrane of hepatocytes (34,35). The family of SLC22A genes also includes the carnitine and cation transporters OCTN1 (SLC22A4) and OCT6 (SLC22A16) and the Na⁺-carnitine cotransporter OCTN2 (SLC22A5), which can also behave as a Na⁺-independent transporter of organic cations. OCTN1 and OCTN2 are expressed in human liver (33).

The accumulation, and hence toxicity, of oxaliplatin, but not that of cisplatin or carboplatin, has been reported to be markedly increased in cells transfected with OCT1, suggesting that oxaliplatin could be a good substrate for this transporter (36). OCT2, expressed in the nephron proximal tubule, is able to transport cisplatin, and has been suggested to be a major determinant in the nephrotoxicity induced by this cytostatic drug (37,38). Bleomycin, an antibiotic with anticancer activity, is transported in yeasts by a polyamine transport system (39), whose human ortholog is probably OCT1 (40). Imatinib, a phenylaminopyrimidine derivative commonly used to treat chronic myeloid leukemia, is also a substrate for OCT1, and it has been reported that the efficiency of OCT1-mediated imatinib uptake is a key determinant of the cellular response to this drug (41). There is also evidence that mitoxantrone is also transported by OCT1 (33).

OCT6 is involved in doxorubicin uptake, and indeed leukemia cells that over-express this transporter are...
markedly more sensitive to the cytostatic activity of the drug (42). Although the expression of OCT6 is not detectable in human adult liver, this transporter is found in fetal liver as well as in several cell lines derived from human liver cancer (42).

3.1.5. Nucleoside transporters CNTs and ENTs (SLC28 and SLC29 families)

Nitrogenated base derivatives constitute an important group of anticancer drugs. Thus, purine-base analogs, such as 6-mercaptopurine and 6-thioguanine, and pyrimidine-base analogs, such as 5-fluorouracil and gemcitabine, are commonly used in the treatment of several types of cancer, including lymphocytic leukemia and acute myelocytic leukemia (43). Moreover, gemcitabine is efficient in the treatment of several cancers derived from epithelial cells located in the lung, pancreas, breast, bladder, ovaries and head and neck (44). As commented above, some of these agents are substrates of OATs (29,31). However, owing to their structural characteristics nucleoside transporters also play an important role in the uptake of these drugs by the liver (Table 1). Concentrative nucleoside transporters (CNTs), which belong to the SLC28 gene family, are able to carry out the high-affinity sodiumdependent cotransport of nucleosides, whereas equilibrative nucleoside transporters (ENTs, gene family SLC29) are involved in the low-affinity uptake of a broad variety of nucleosides and their derivatives. Hepatocytes express CNT1 (SLC28A1) and CNT2 (SLC28A2), which have a certain preference for pyrimidine and purine nucleosides, respectively (45). These cells also express ENT1 (SLC29A1) and ENT2 (SLC29A2), which transport both purine and pyrimidine nucleosides. Thus, both 6-mercaptopurine and thioguanine are substrates of ENT2 (46,47) and ENT3 (46). Accordingly, a low expression of these carriers in tumor cells implies a reduced uptake and hence a certain resistance to these drugs (46). ENT2 does not transport 5-fluorouracil (47) but it does transport another pyrimidine analog, gemcitabine, which is a substrate of both ENT1 and ENT2, although that drug is transported with much higher affinity by CNT1 (48-50). CNT1 is probably also the transporter responsible for the uptake of 5′-deoxy-5-fluorouridine, the active metabolite of the oral anticancer drug capecitabine, a direct precursor of 5-fluorouracil (51).

3.1.6. Other transport systems involved in the uptake of antineoplastic drugs

In addition to those reported above, other members of the SLC superfamily play a role in the uptake of anticancer drugs. Among them, some examples will be described below. The copper transporter CTR1 (gene symbol SLC31A1) is involved in the uptake of platinum-related drugs, such as cisplatin, carboplatin and oxaliplatin (52). Reducing or abolishing the expression of this transporter in yeasts and in murine tumor cell lines results in an impaired intracellular accumulation of cisplatin and hence an enhanced resistance to this drug (53). Induction of resistance to cisplatin by continuous exposure in human colon carcinoma cells is accompanied by a down-regulation of CTR1 (54).

Melphalan, an alkylating phenylalanine derivative, is taken up via the L-type amino acid transporter-1 (LAT-1, gene symbol SLC7A5) (55-57).

Finally it is noteworthy that several antineoplastic compounds with lipophilic characteristics are able to cross the plasma membrane by simple diffusion without the intervention of any carrier protein. This seems to be the case of anthracyclines, such as doxorubicin and daunorubicin, or mitoxantrone. These are amphipatic molecules with a positive charge, which means that they may be recognized as substrates by OCTs (33,42) but also, because of their lipophilicity, they could be emplaced on the surface of membranes and cross them through a “flip-flop” process (58,59).

3.2. TRANSPORTERS INVOLVED IN THE EXPORT OF ANTICANCER DRUGS BY LIVER CELLS

Although they are not the only route determining the export of xenobiotics from liver cells towards the bile or the blood, several members of the superfamily of ATP-binding cassette (ABC) proteins account for the majority of these processes. Below we shall review those related to the role of members of several ABC families in the export of anticancer drugs, one of the most important mechanisms of resistance to chemotherapy. Table 1 summarizes the list of transport systems involved in the efflux of these compounds.

3.2.1. The ABCA family

So far, twelve members of this family have been identified in humans. However, only six of them are clearly expressed in the liver. These are ABCA1, 5, 6, 8, 9 and 10 (60,61). Their main physiological role is the transport of lipids across the plasma membrane and across the membrane of intracellular organelles. However, a role of these proteins in resistance to chemotherapy has been suggested based on the following data: i) some of them are able to transport cytostatic drugs, as is the case of ABCA8, which transports doxorubicin (62); ii) moreover, in chemotherapy-resistant cell lines an up-regulation of ABCA2 (63), ABCA3 (64) and ABCA6 (65) occurs. These findings suggest that ABCA transporters could play a role in enhancing the transfer of cytostatic drugs out from the cells or towards intracellular organelles, hence favoring their biotransformation or storage (61).

3.2.2. The ABCB family

This family of ABC proteins plays a key role among the mechanisms responsible for the export of potentially toxic endogenous and xenobiotic compounds. The multidrug resistance protein-1 (MDR1), or P-glycoprotein (gene symbol ABCB1), was the first to be identified and is the best studied (66). MDR1 is expressed in hepatocytes, cholangiocytes, lung, placenta, kidney and intestine, and also in many tumors of epithelial origin (67). In the latter case, its over-expression results in resistance to a large variety of compounds with very different structures and mechanisms of action (68). Thus, MDR1 is able to transport relatively hydrophobic organic cations (69),
Liver transport of anticancer drugs

cardiotoxins, glucosides, antihistaminics, analgesics, narcotics and immunosuppressants (for a review, see 67,70). Among the MDR1 substrates with antitumor activity (Table 1) are methotrexate (71), purine-base analogs (72), paclitaxel (73), vinca alkaloids (68), tamoxifen (74), amsacrine (75), bisantrene (76), anthracyclines (66), mitoxantrone (75), camptothecins (77), podophyllotoxins (68) and imatinib (78). Several polymorphisms in the ABCB1 gene have been identified, some of which impair MDR1 function and modify the bioavailability of many drugs (79). Moreover, MDR1-dependent transport activity parallels the biotransforming activity of phase I and phase II enzymes (80). As an example, the CYP3A4 isoform of the cytochrome P450 system, which is one of the most abundant in the liver, together with MDR1 are key elements determining overall drug bioavailability (81). Thus, the coordinated action of both systems can reduce the bioavailability of certain drugs to less than 50% (82).

Although the main function of MDR3 (gene symbol ABCB4) in human hepatocytes, and its ortholog Mdr2 in rodents, is the translocation of phosphatidylcholine from the inner layer to the outer layer of the canalicular membrane (83), which is needed to neutralize the detergent effect of bile acids, this transporter is also involved in the transport of xenobiotics, including paclitaxel and vinblastine, although with less efficiency than MDR1 (84). This is probably why these compounds can impair MDR3-mediated phospholipid secretion, which is particularly evident in the presence of mutations that limit the functionality of this transporter (84).

The bile salt export pump (BSEP; gene symbol ABCC1) is the main mechanism responsible for bile acid secretion into bile (85). Like most ABC proteins, this pump uses the energy of ATP hydrolysis to transport monoanionic bile acids across the canalicular membrane into the bile with high affinity and efficiency (86,87). In addition to this physiological role, it has been shown that LLC-PK1 and MDCKII cells transfected with mouse Bsep are able to export some typical MDR1 substrates, such as vinblastine, but not daunorubicin or paclitaxel (88).

3.2.3. The ABCB family

Among the multidrug resistance-associated ABC proteins (MRPs) belonging to the ABCB family, the most abundantly expressed in the liver is MRP2 (gene symbol ABCC2). This transporter is expressed in the apical membrane of polarized cells, such as hepatocytes, but also in the renal tubule epithelium and intestinal mucosa. In the liver, this transporter plays an important role in the biliary secretion of endogenous and xenobiotic organic anions (89). Although it has broad substrate specificity, MRP2 has a higher affinity for compounds conjugated with glutathione, glucuronic acid, or sulfate and lipophilic compounds, such as leukotrien C4, bilirubin and some steroids (for review, see 90). At least rat Mrp2 has been shown to be able to transport dianionic bile acid species, either sulfated (91) or conjugated with glucuronic acid (92). Nonetheless, among MRP2 substrates there are also non-conjugated compounds, such as bromosulfophthalein and methotrexate, as well as glutathione, both reduced and oxidized. MRP2 is also able to transport several anticancer drugs (Table 1), such as chlorambucil (93), cyclophosphamide (94), methotrexate (95), vinca alkaloids (96), cisplatin (97), tamoxifen (30), anthracyclines (97), camptothecins (98) and podophyllotoxins (97). In addition to normal liver tissue, MRP2 is also expressed in many solid tumors, such as hepatocellular carcinoma, colorectal cancer, and cancers of lung, kidney and ovaries (99). This, together with its ability to confer resistance to many different drugs, explains the marked relevance of this transporter in clinical practice.

In addition to the canalicular isoform MRP2, there are also transporters of the MRP family expressed at the basal membrane of hepatocytes. These include MRP1 (ABCC1), MRP3 (ABCC3) and MRP4 (ABCC4), whose expression levels under physiological circumstances are low but that may increase in pathological conditions such as the Dubin-Johnson syndrome due to the existence of mutations in MRP2 gene or to cholestasis (100). These transporters may play a role in the extrusion of toxic compounds from normal hepatocytes and of anticancer drugs from tumor cells (Table 1). MRP1 is able to transport nitrogen mustards (101), oxazaphosphorines (94), methotrexate (95), mitoxantrone (102), camptothecins (103), vinca alkaloids, anthracyclines and etoposide (104). Among substrates of MRP4 are oxazaphosphorines (94), acyclic nucleosides (105), purine-base analogs (106), methotrexate (107) and camptothecins (108). Regarding antineoplastic drugs, MRP3 can transport methotrexate (109), whereas the also basolateral isoform MRP5 (gene symbol ABCC5) is able to transport purine-base analogs (110).

MRP6 (gene symbol ABCC6) is also expressed in hepatocytes (111) but its ability to behave as a drug-exporting system is probably low (112). MRP6 does not transport products resulting from phase I biotransformation (sulfated, glucuronidated or conjugated with glutathione), but does show a certain ability to transport cisplatin, doxorubicin and etoposide (113).

Other less studied members of this family are MRP7 and MRP8 (gene symbols ABCC10 and ABCC11, respectively). The presence of MRP7 mRNA in many different tissues, including the liver, has been reported (114). When this transporter is transfected in cells in vitro, its ability to transport anticancer drugs such as paclitaxel and vincristine has been observed (114). Although at low levels, MRP8 mRNA has been also found in the liver, and this transporter has been shown to be able to transport methotrexate (115), fluorouracil (116) and acyclic nucleosides (117).

3.2.4. The ABCG family

Most members of the ABCG family are involved in sterol, mainly cholesterol, transport. This is the case of ABCG1, ABCG4, ABCG5 and ABCG8 (118). Among these, those with the highest expression levels in hepatocytes are ABCG5 and ABCG8, which form a heterodimeric protein located in the canalicular membrane
that is able to secrete cholesterol and other neutral steroids, such as sitosterols, into the bile (119,120).

The breast cancer resistance protein (BCRP; gene symbol ABCG2) shows broader substrate specificity than the rest of members of the ABCG family. Owing to the fact that among its substrates there are many anticancer drugs, the over-expression of this protein is considered to be a relevant problem in the treatment of solid tumors (118). The structure of BCRP consists of six transmembrane domains that include a single ATP-binding site (121). Thus, BCRP is considered a "half-transporter" that forms homodimers or oligomers (of up to twelve units) stabilized by disulfide bridges (122). In addition to the liver, prostate, small intestine and colon (123), ABCG2 is also highly expressed in placenta (124,125). Using immunohistochemistry techniques, the presence of BCRP in the apical membrane of hepatocytes, trophoblast cells, and epithelial cells of the intestinal mucosa has been detected (126,125).

Among the endogenous compounds transported by BCRP are porphyrins (127) and several sulfated steroids, including bile acids, estrone 3-sulfate and dehydroepiandrosterone sulfate (128,129). Moreover, BCRP can transport anticancer drugs such as oxazaphosphorines (94), methotrexate (130) and its glutamylated metabolites (131), flavopiridol (132), tamoxifen (133), bisantrene (121), doxorubicin and mitoxantrone (123,134), irinotecan and topotecan (135,136), etoposide (137) and imatinib (138).

Several mutations in the ABCG2 gene have been reported. Most of them have been detected in tumor cells. These alter the expression, localization and transport activity of BCRP, which affect the pharmacokinetics of its substrates and the spectrum of anticancer drug resistance (139,140). Thus, cells expressing variant BCRP with the R482G and R482T mutations display enhanced resistance to anthracyclins and rhodamine 123 (141), but lack the ability to transport methotrexate (129). A frequent polymorphism, mainly in the Japanese population, is C421A, which is accompanied by a lower protein expression and a reduced ability to transport topotecan and irinotecan (142,143). In clinical practice, after the administration of ifosfamide, a topoisomerase I inhibitor, patients bearing this mutation present higher serum concentrations of this drug than people bearing wild-type BCRP (144). Another common polymorphism in this gene is G34A, which causes an alteration in protein targeting to the plasma membrane and reduces drug export ability of BCRP when expressed in cultured cells (143).

4. CHANGES IN THE FUNCTION OF BILIARY TRANSPORTERS INDUCED BY INTERACTIONS WITH ANTICANCER DRUGS

Owing to the broad substrate specificity of hepatobiliary transporters, there are many possible competitive effects between the substances that are transported by these carriers. This accounts for the interactions of the types: drug-drug, drug-food component and drug-endogenous substance. Some examples of these interaction involving anticancer drugs are reviewed below.

4.1. Drug-drug interactions

The fact that both the uptake and export systems for anticancer drugs share some degree of substrate specificity explains the possibility of drug-drug interactions at both levels. Some examples illustrating this situation are that OATP-C/1B1 is involved in the liver handling of the active metabolite of irinotecan SN-38 (9), which is exported by MDR1, MRP1, MRP2, and BCRP (98,145). Paclitaxel is also transported by OATP8/1B3 (10) and eliminated from the cells by MDR1 and MRP (146,147). The overall result of interactions with these transporters depends on the differential effect between uptake and export mechanisms.

As mentioned above, MDR1, MDR3, BSEP, MRP2 and BCRP are responsible for the biliary secretion of many different xenobiotics, including anticancer drugs (146-149). Most of them are eliminated from the body, mainly by the liver, after biotransformation. However, some anticancer drugs are partly excreted by the kidney, with or without previous biotransformation. The existence of drug-drug interactions could modify the proportion of the dose administered that is eliminated by the kidney, and the amount of drug that actually reaches the tumor cells, which is then accumulated in them with ability to carry out its pharmacological activity. The existence of potential drug-drug interactions has been the basis of the development of novel strategies to overcome resistance to chemotherapy. This consists of the use of inhibitors of ABC proteins, named chemosensitizers because they are aimed at reducing drug efflux (excretion) and hence increasing effective intratumor levels. Most reported chemosensitizers are able to interfere with the function of MDR1 by inducing a competitive or non-competitive inhibition of this transporter, without being transported themselves (150). Among these modulating agents are verapamil, cyclosporine, valspodar, GF120918 and LY357739 (151,152). However, impaired ABC protein-mediated excretory function may also enhance the toxicity of anticancer drugs to healthy tissues, thus favoring the appearance of noxious side effects and limiting the usefulness of this strategy. Owing to the expression of MDR1 in the intestinal mucosa, the use of chemosensitizers for this transporter results in marked changes in the bioavailability of anticancer drugs when given orally. Thus, it has been reported that the administration of MDR1 inhibitors such as cyclosporine enhances the oral bioavailability of paclitaxel (153), etoposide (154) and doxorubicin (155) in humans. Verapamil increases the plasma concentrations of paclitaxel in women with breast cancer when both drugs are co-administered (156). Moreover, the oral administration of R101933 combined with i.v. administration of docetaxel has been assayed in humans with promising results, because the inhibition of MDR1 is not accompanied by major side effects or pharmacokinetic interactions in serum (157). In rodents, GF120918 increases the oral bioavailability of topotecan (158). MDR1 expression and function can be also modulated in an indirect manner, for instance, by
Liver transport of anticancer drugs

modifying the interaction with plasma membrane lipids (159) or the inhibition of protein kinase C (160).

It has been also proposed that the inhibition of bile secretion via Mrp and/or Mdr1 using cyclosporine A and probenecid increases the serum concentrations of irinotecan and their metabolites in rats (161-163). Moreover, probenecid-induced inhibition of rat Mrp2 reduces the biliary secretion of methotrexate (164).

Regarding BSEP, it has been suggested that BSEP-mediated resistance to paclitaxel in human ovary cancer cells can be reversed by cyclosporine A, PSC833 and verapamil (165).

The expression of hepatobiliary transporters can be modified by certain xenobiotics, which, in turn, can affect the bioavailability of anticancer drugs; either reducing their efficacy or enhancing their side effects. MDR1 expression in liver cells can be up-regulated by many different xenobiotics, such as carcinogens (e.g., 2-acetylaminofluorene, polycyclic hydrocarbon aromatics, 3-methylcholangrene, benzo(a)pyrene, aflatoxin B1, methylnethane sulfonate and diethylnitosamine) (166-170), phenothiazines and bromocriptine (166,171).

MRP2 expression can be induced by 2-acetylaminofluorene (172), the barbiturate phenobarbital (172,173), which also induces MRP3 (174,175), the chemopreventive agent oltizproz (176), the herbicide and peroxisome proliferator agent 2,4,5-trichlorophenoxyacetic acid (177), the anti-tuberculosis drug rifampicin, and the anti-estrogen tamoxifen (178). Cycloheximide is able to induce the expression of Mdr1b and Mrp2 in rat liver cells (179,180). Most of these compounds also induce up-regulation of detoxifying enzymes, which may result in more complex changes in the bioavailability of anticancer drugs in response to these xenobiotics (166). It is noteworthy that certain xenobiotics have the opposite effect, i.e., they inhibit the expression of export pumps. Thus, cytochalasin and colchicine reduce mRNA Mdr1b levels in primary rat hepatocytes (181), whereas nocodazol down-regulates human MRP2 in human hepatoma HepG2 cells (174).

4.2. Drug-nutrient interactions

Certain food components may also interact with hepatobiliary transporters, hence altering the bioavailability of anticancer drugs. Some of these interactions best studied are due to the inhibition of MDR1, MRPs and BCRP by flavonoids (182-185). Thus, quercetin inhibits doxorubicin transport in human breast cancer cells (186). In contrast, kaempferol, galangin and quercetin are able to stimulate doxorubicin export via MDR1 in human colon carcinoma cells (187). The reason for these apparent controversial results is not known. Genistein inhibits MDR1-mediated daunorubicin transport in human breast cancer cells (188). Both biochanin A and silymarin enhance the accumulation of daunomycin and doxorubicin in human breast cancer cells, and inhibit vinblastine efflux from Caco-2 cells (189). This is due to changes in MDR1 activity, without affecting its expression levels (190).

The interaction of flavonoids with MDR1 may also modify the distribution of drugs across normal epithelia, such as the blood brain barrier. Thus, at low concentrations, quercetin and kaempferol decrease the accumulation of vincristine in capillary endothelial cells from mouse brain, whereas at high levels these compounds have the opposite effect (191). Regarding in vivo studies, it has been demonstrated that flavone (192) and quercetin (193) enhance the bioavailability of paclitaxel in rats. An interesting coincidence is that most of the drugs that are transported by MDR1 are also substrates of CYP3A. It is also noteworthy that flavonoids can also inhibit CYP3A activity, which makes it difficult to distinguish whether drug-drug interactions affect one or both of these elements of the detoxification machinery when determining the overall pharmacological activity.

Interactions between flavonoids and MRP1 were first described by Versantvoort (194,195), who reported that genistein, biochanin A, apigenin and quercetin were able to inhibit MRP1-mediated daunorubicin transport in cancer cells. Some flavonoids present in the diet are able to modulate the transport of conjugates of glutathione with organic anions, drug resistance, and the ATPase activity of MRP1 (183). Thus, in human pancreatic adenocarcinoma cells, the flavonoids morin, chalcone, silymarin, phloretin, genistein, quercetin, biochanin A and kaempferol are able to inhibit the MRP1-mediated transport of daunomycin and vinblatine, which may be due to a direct interaction with MRP1 or to changes in the intracellular concentration of glutathione (196). Although MRP1 and MRP2 share a certain degree of substrate specificity, the structural requirements for flavonoids to be able to interact with these proteins are different, which account for the fact that fewer flavonoids are able to carry out a strong inhibition of MRP2 (197).

Regarding BCRP, the ability of many flavonoids to interact with this transporter has also been reported. Thus, silymarin, hesperetin, quercetin and daidzein, as well as stilbene resveratrol enhance the intracellular accumulation of mitoxantrone, whose extrusion is mediated by BCRP (198). This has been confirmed in different studies addressing the effect of 20 flavonoids potentially present in foods (apigenin, biochanin A, chrysine, daidzein, epigallocatechin, epigallocatechin-3-gallate, fisetin, genistein, hesperetin, kaempferol, luteolin, morin, myricetin, naringenin, naringin, phloretin, phloridizin, quercetin, silybin and silymarin) on BCRP-mediated mitoxantrone transport in human lung and breast cancer cells. Most of these compounds were found to be able to increase intracellular concentrations of mitoxantrone and overcome resistance to this drug. Chrysine and biochanin A seem to be the strongest BCRP inhibitors (185). It has been also shown that the flavonoids genistein, naringenin, hesperetin, acacetin, apigenin, chrysine, diosmetin, luteolin, galangin, kaempferide and kaempferol enhance the cytotoxicity of SN-38 and mitoxantrone in human leukemia cells expressing BCRP (199). To adequately evaluate the potential effect of food components, it is necessary to consider that they very often are present together and hence may have combined effects. Thus, when combined effects
Liver transport of anticancer drugs

of several flavonoids (apigenin, biochanin A, chrysin, genistein, kaempferol, hesperetin, naringenin and silymarin) on BCRP-mediated mitoxantrone transport were evaluated in human breast cancer cells, an additive effect was observed (184). This has lead to the suggestion that “flavonoid cocktails” may be useful to overcome drug resistance in cancer chemotherapy. Moreover, the combined effects with other non-flavonoid food components that may also inhibit BCRP, such as isothiocyanates, must also be considered (200). In vivo studies have shown that although chrysirin and benzofoxiane inhibit BCRP-mediated topotecan transport in human breast cancer cells, combined treatment of chrysin and benzofoxane fails to further enhance the oral bioavailability of this compound in rats and Mdr1a/1b knock-out mice (158). The reason for such results is probably the low sensitivity of rodent Bcrp to inhibition by flavonoids, as has been demonstrated in transfected MDCK kidney cells.

Grapefruit juice, which contains high levels of flavonoids, may impair intestinal MDR1 activity without affecting its expression. Thus, grapefruit juice can inhibit MDR1-mediated vinblastine efflux from Caco-2 cells (201). Moreover, grapefruit juice stimulates the efflux of vinblastine and other MDR1 substrates across the basal membrane of MDCK cells. In humans, grapefruit juice has been reported to reduce the bioavailability of etoposide (202) and other drugs (203). It should be considered that flavonoid-rich food, such as grapefruit, may also affect the overall uptake of drugs by interaction with OATP-C/1B1 (204).

4.3. Interactions between drugs and endogenous compounds

The interaction between anticancer drugs and hepatobiliary transporters may also affect the liver uptake and biliary secretion of endogenous compounds. In this sense, jaundice has been reported after combined administration to patients of cyclosporine with daunorubicin (205), doxorubicin (155) or etoposide (154). Inversely, the elevated levels of certain endogenous substances may affect the handling of anticancer drugs by hepatobiliary transporters. Thus, bile acids reduce the overall hepatobiliary elimination of cisplatin in rats, even though they induce a more marked secretion of cisplatin from hepatocytes into bile (206).

Several hormones may affect the expression of the pumps involved in drug elimination into bile, such as MDR1, BSEP and MRPs (207). Hydroxylated steroids, including cortisol, dexamethasone, aldosterone and corticosterone, can be exported by MDR1, whereas progesterone cannot be transported by this pump (208), but behaves as a modulator of the activity of this transporter (209). MDR1-dependent resistance of several cell lines to vinblastine and doxorubicin can be overcome by anti-estrogens, such as tamoxifen and toremifener (210), and anti-progestins, such as RU 486 (211). Other hormones able to modulate these transporters and that might affect the bioavailability of anticancer drugs are insulin (212), insulin-like growth factor-I (213) and some pituitary hormones (214) able to induce Mrd1 expression in rodent liver cells. In rat hepatocytes, glucocorticoids induce an up-regulation of Mrp2 (215) and Bsep (216), whereas prolactin enhances Bsep expression in the livers of ovariectomized rats (217,218).

Conjugation with glutathione followed by extrusion of the conjugates via MRP s is an important detoxification pathway for many anticancer drugs. Indeed, the levels of glutathione, conjugating enzymes and MRP expression are increased in many types of drug-resistant cancer cells. This suggests that glutathione levels might modify the cellular response to treatment with anticancer drugs. In general, a decrease in the cellular content of glutathione would enhance the accumulation of active drug, whereas high intracellular glutathione levels would favor the efflux process (219). Some anticancer drugs, such as vincristine can be co-transported with glutathione by MRP1 (220).

5. EFFECT OF ANTICANCER DRUGS ON THE EXPRESSION OF HEPATOBILIARY TRANSPORTERS

Another interesting aspect of the relationship between anticancer drugs and hepatobiliary transporters is that the expression of these proteins can be modified by exposure to these drugs. Thus, MDR1 has been found to be up-regulated in the liver of patients treated with antineoplastic agents, possibly reflecting an adaptive response aimed at increasing the biliary elimination of the drug and its metabolites (221,222).

The expression of ABC proteins can be increased in response to exposure to very structurally different compounds. Even compounds that are not substrates of MDR1 have been found to increase the levels of MDR1 mRNA in tumor cell lines, resulting in a multidrug resistance phenotype (223). For instance, in primary cultures of rat hepatocytes acute treatment with anthracyclins, such as doxorubicin or daunorubicin, or with mitoxantrone, stimulate the expression of Mrd1b (224,225). Mitoxantrone has also been found to induce an up-regulation of Mrd1 in vivo both in the liver and intestine of rats but not those of mice (224).

Cultured rat hepatocytes up-regulate Mrp2 when they are exposed to cisplatin (180). This agent is also able to induce the expression of Mrp2, Mrp3 and Mrp5 in human cell lines of hepatic origin (226). Tamoxifen is also able to induce Mrp2 expression in the liver of non-human primates (178). The mechanism accounting for these changes is not well known, but it has been suggested that reactive oxygen species would trigger, either directly or through an alteration of intracellular macromolecules such as DNA, the defensive response (227). In support of this concept is the fact that the daunorubicin-induced up-regulation of rat Mrd1b is dependent on p53 (228).

Over the past few years, the key role played by nuclear receptors in the control of the expression of hepatobiliary transporters has become evident. Some
members of this superfamily of transcription factors are dependent on the interaction with a ligand, which, in some cases, could be a xenobiotic compound, suggesting that they would behave as “xenosensors” (for a review, see 229). This is the case of the constitutive androstane receptor (CAR) and the steroid and xenobiotic X receptor/pregnane X receptor (SXR/PXR). Both form heterodimeric complexes with the retinoid X receptor (RXR) to activate the promoters of the enzymes and transporters involved in the detoxification of the ligand by the liver (for a review, see 230). Thus, CAR activators, such as phenobarbital, induce the expression of MRP2 (231) and MRP4 (232), and probably also MDR1 (233). Rifampicin and other PXR ligands stimulate the expression in the liver of MDR1 (234,235), MRP2 (231), MRP3 (236,237) and Oatp2/1a4 (238).

Among the ligands of these nuclear receptors are several drugs with anticancer activity, such as cisplatin and paclitaxel. In contrast to the structurally related carboplatin and docetaxel, respectively, the former are able to strongly activate PXR, and hence induce the expression of MDR1 (235,239). Other anticancer drugs with the ability to activate PXR are topotecan and etoposide (240).

The opposite effect has also been described. Thus, eteineascidin-743 (ET-743), a strong cytostatic agent of marine origin that has been used in clinical practice to treat sarcoma and breast and ovary cancer, has been found to down-regulate the liver (for a review, see 231). This, CAR activators, such as phenobarbital, induce the expression of MRP2 (231) and MRP4 (232), and probably also MDR1 (233). Rifampicin and other PXR ligands stimulate the expression in the liver of MDR1 (234,235), MRP2 (231), MRP3 (236,237) and Oatp2/1a4 (238).

Diallyl sulfide is a chemopreventive agent obtained from garlic that affords efficient protection against stomach and colon cancer. Moreover, diallyl sulfide induces the expression of Mrp2 in rat kidney, an effect that is enhanced when it is administered in combination with cisplatin, which may constitute an additional stimulus for a defensive response to be elicited (242). Response to diallyl sulfide has been reported to be mediated by the activation of CAR (243).

Finally, it should be mentioned that several cytostatic drugs are direct ligands of RXR. This is the case of bexarotene (Targretin), which is a potent selective ligand of RXR (244). Since RXR is the mandatory partner of other nuclear receptors, such as PXR, CAR and the bile acid sensor farnesoid X receptor (FXR), changes in RXR could have more profound and complex repercussions in the expression of hepatobiliary transporters. Indeed, in the liver of rats treated with bexarotene up-regulation of canalicular Bsep has been found (245), this carrier being known to be activated by the heterodimer FXR:RXR (246).

6. EXPRESSION OF HEPATOBILIARY TRANSPORTERS IN TUMORS OF THE ENTEROHEPATIC CIRCUIT

The expression of hepatobiliary transporters in tumors of the liver, gallbladder, biliary tree and intestine can be markedly different to that present in normal tissues. Owing to the phenotypic diversity of the tumors affecting these organs it is not possible to establish a common pattern of reduction or loss of transporters involved in the uptake and export of cholephilic organic anions.

Several tumor cell lines of hepatic origin maintain the expression of NTCP and some members of the OATP family, although the ability to transport, for instance bile acids, is usually reduced (247-250). Thus, using HepG2 cells, which are derived from human hepatoblastoma, different groups have demonstrated that in spite of the detectable presence of the mRNA of OATP-C/1B1, OATP8/1B3 and OATP3A1, although at lower levels than in healthy tissue (251), none of these isoforms could be detected by immunohistochemistry, whereas the expression of OATP-B/2B1, OAT2 and OAT3 were maintained or even increased (252).

When rat liver cells were obtained after undergoing chemical induction of hepatocarcinogenesis, these cells were able to take up bile acids. Sodium-independent mechanisms were better preserved than sodium-dependent processes, which suggest that during carcinogenesis the expression of sodium-independent uptake transporters of organic anions is more resistant to the loss of phenotypic characteristics typical of healthy adult hepatocytes (253).

In agreement with these findings, other authors have reported that the expression of NTCP in human hepatocellular carcinoma is lower than that in the surrounding healthy tissue. In contrast, that of OATP is similar in both healthy and tumor liver tissue (22). However, more recently, other groups have reported a markedly reduced expression of both NTCP and OATP-C/1B1 in the majority of hepatocellular carcinomas assayed (254). Similar results were found for OATP8/1B3 (251,252). None of these isoforms of OATPs were found expressed in cholangiocarcinomas or metastatic liver cancer (251). However, the abundance of the mRNA of some hepatobiliary transporters in colorectal adenomas and carcinomas has been found to be consistent with possible transport ability. Indeed, when total mRNA was injected into Xenopus laevis oocytes, this conferred them the capability to take up bile acids and cytostatic bile acids derivatives (255).

In non-cirrhotic livers with hepatocellular adenomas, the expression of OATP-C/1B1 and OATP8/1B3 is very low or absent, whereas in focal nodular hyperplasia these isoforms are up-regulated, although their expression is dispersed, as observed by immunohistochemistry (256). NTCP, OATP-C/1B1 and OATP8/1B3 expression was reduced in patients with primary biliary cirrhosis (257,258), in parallel with the degree of injury and jaundice.

It is important to highlight that in spite of the reduction in the expression or/and functionality of transport proteins in tumor cells, the overall load of substrates (e.g., cytostatic drugs) could be enhanced due to the lack of polarity, which could prolong the intracellular residence of...
Liver transport of anticancer drugs

the compounds taken up. Thus, when platinated bile acid derivatives were administered to nude mice bearing an orthotopically implanted liver tumor of murine origin from Hepa 1-6 cells, the amount of drug found in the tumor was higher than that measured in the surrounding healthy tissue (259). This is important, because there is a relationship between the efficacy and intracellular concentrations of these drugs (260).

Regarding export mechanisms, it has been reported that the expression of both canalicular MDR1, MDR3 and BSEP and basolateral MRP3 is reduced in a highly variable pattern among the different types of hepatocellular carcinoma. Marked variability also exists in hepatocellular carcinoma. The expression levels of MRP2 are generally maintained or even show a trend towards increased levels (254).

7. TARGETING OF CYTOSTATIC DRUGS USING HEPATOBILARY TRANSPORTERS

The goal of the targeting of anticancer drugs is to increase the concentration of pharmacologically active agents in tumor cells, and, if possible, to reduce the exposure of healthy tissues and hence minimize the side effects of the treatment. One of the different strategies devised is based on the specificity of interactions between macromolecules (e.g., receptors, transporters, enzymes, etc) and smaller biomolecules, which have been used as Trojan Horses to shuttle cytostatic agents. Much effort has been devoted to taking advantage of the efficient uptake of cholephilic organic anions, such as bile acids, by transporters expressed in both hepatic and intestinal cells for use as molecular targets for directing anticancer drugs towards tumors of the enterohepatic circuit (261). The usefulness of bile acids in obtaining targeted drugs is based on their versatile derivatization possibilities, rigid steroidal backbone, enantiomeric purity, availability, and the low cost of natural bile acids for use in chemical reactions (for a review, see 262-264). This pharmacological tool has been investigated for the targeting of very different types of drugs; not only anticancer agents (265-268). Bile acids are versatile building blocks to which many different substances can be attached at different positions of the steroidal skeleton or on the side chain via different chemical bonds, which can be further varied by linkers with different structures, lengths, stereochemistries, polarities, and/or functional groups. A key aspect in designing these drugs is to know which regions of the bile acid interact with the carrier and which ones might be used for chemical derivatization to bind the active agent. In principle, the possibilities for conjugating a drug to a bile acid include hydroxyl groups, in particular the one located at the 3α-position, and the carboxyl group on the side chain.

Members of the SLC10A family, such as NTCP in hepatocytes and ASBT in cells of the intestinal epithelium and cholangiocytes, which are highly efficient in transporting bile acids, have been reported to interact with the region of the bile acid that contains its side chain (269). Consequently, to target bile acid derivatives to tissues expressing these transporters, this part of the molecule must not be used to bind the active agent. Although the efficiency is lower, the expression of OATP2 is in general better preserved in tumor cells. Several members of the human OATP family have been shown to be able to transport bile acid derivatives obtained by coupling an active agent to the bile acid side chain (23).

Both strategies have been used to obtain cytostatic bile acid derivatives carrying a coupling agent, such as chlorambucil (270), and other organic moieties (271) as well as inorganic agents, such as platinum- and gold-based drugs (for a review, see 262). The latter are particularly interesting because of the small size of the resulting molecule, which would increase the probability of maintaining both substrate properties as regards bile acid transporters and reactivity versus DNA, and hence the antiproliferative effect of these metals, in particular platinum(II) such as in cisplatin - cis-diaminedichloro platinum(II) - (272). Two of the best studied and most promising compounds of this family of drugs are cis-diamminechloro-cholylglycinate platinum(II) (Bamet-R2) (273) and the more active and less toxic antitumor agent cis-diammine-bisursodeoxycholate platinum(II) (Bamet-UD2) (274). Derivatives containing transition metal atoms other than platinum, such as gold (275), are less efficient cytostatic agents than those containing platinum(II) in the reactive moiety. Regarding the organic moiety of the molecule, different derivatives have been obtained by changing either the bile acid moiety or the linker between this and the DNA-reactive moiety (261). The list of these derivatives has been expanded by the synthesis of several carboplatin-bile acid derivatives (276).

Although cytostatic bile acid derivatives were first synthesized to enhance their water miscibility (277) or to target antitumor agents toward tumors located in tissues of the enterohepatic circuit (261) they have the additional advantage of being efficiently taken up by the liver and eliminated into bile. This reduces the amount of drug that, escaping from the tumor, might reach the general circulation during regional therapy (278,279).

8. ACKNOWLEDGMENT

This study was supported in part by the Junta de Castilla y Leon (Grants SA059A05, SA086A06 and SA021B06), Spain. Ministerio de Ciencia y Tecnologia, Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica (Grant BFU2006-12577), Spain. Fundacion Investigacion Medica Mutua Madrileña (Conv-III, 2006). Instituto de Salud Carlos III, FIS (Grants CP05/00135 and PI051547). The group is member of the Network for Cooperative Research on Membrane Transport Proteins (REIT), co-funded by the Ministerio de Educacion y Ciencia, Spain and the European Regional Development Fund (ERDF) (Grant BFU2005-24983-E) and belongs to the “Centro de Investigacion Biomédica en Red” for Hepatology and Gastroenterology Research (CIBERehd), Instituto de Salud Carlos III, Spain.
9. REFERENCES

Liver transport of anticancer drugs

158. S. Zhang, X. Wang, K. Sagawa, M.E. Morris: Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Drug Metab Dispos. 33, 341-348 (2005)

Liver transport of anticancer drugs

247. R. Kroker, M. S. Anwer and D. Hegner: A compartmental model for hepatic transport of taurocholic acid in isolated perfused rat liver. *Naunyn Schmiedebergs Arch Pharmacol* 303, 287-293 (1978)

Liver transport of anticancer drugs

Liver transport of anticancer drugs

Key Words: ABC proteins, Cancer, Carrier, Chemotherapy, Resistance, Transport, Tumor, Uptake, Review

Send correspondence to: Jose J. G. Marin, Department of Physiology and Pharmacology, Campus Miguel de Unamuno E.D. S-09, 37007-Salamanca, Spain, Tel: 34-923-294674, Fax: 34-923-294669, E-mail: jjgmarin@usal.es