SHIGA TOXIN MODE OF ACTION IN E. COLI O157:H7 DISEASE.

Tom G. Obrig

Department of Microbiology and Immunology, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642

TABLE OF CONTENTS:

1. Abstract
2. The Shiga toxins (Stx)-Overview.
 2.1 Shiga toxin production by gram-negative pathogenic bacteria.
 2.2 Evolution of Stxs and the "emerging pathogen", E. coli O157:H7
 2.3 Stx is a vascular acting toxin.
3. Biochemical features of the Shiga toxins.
 3.1 Subunit protein structure
 3.2 Stx removal of a single base from 28S rRNA.
 3.3 Stx is a member of the ribosome inactivating protein family.
5. Stx Receptors expressed on eukaryotic cells.
 5.1 The Stx receptor is a glycosphingolipid, Gb3.
 5.2 Specificity of Stx-receptor interaction.
 5.3 Potential receptor-based therapeutics for EHEC disease.
6. Internalization and processing of Stx by eukaryotic cells.
 6.1 Stx enters cells by receptor-mediated endocytosis.
 6.2 Processing and activation of Stx in target cells.
7. A Role for Shiga toxins in vascular disease.
 7.1 Evidence for Stxs' role in EHEC-associated vascular disease.
 7.2 Additional bacterial factors in EHEC-associated vascular disease.
8. Sensitivity of human endothelial cells to Stxs.
 8.1 Endothelial cells are the putative target of Stxs.
 8.2 Host cytokine regulation of Stx-sensitivity in endothelial cells.
9. Acknowledgments
10. References

1. ABSTRACT

Shiga toxins (Stx) are virulence factors produced by selected bacteria pathogenic for humans. These multicomponent protein complexes are among the more potent toxins known. As inhibitors of eukaryotic protein synthesis, these toxins selectively inactivate ribosomes in an enzymatic manner. Specificity of cell targeting is determined by the high-affinity binding of Stx to its receptor, a glycosphingolipid (Gb3) located in the plasma membrane or some eukaryotic cells. Elaborated by foodborne E. coli O157:H7 bacteria, isotypes of Stx (Stx1 & Stx2) are required for the ensuing vascular changes in humans, including hemorrhagic colitis and renal hemolytic uremic syndrome. Experimental therapeutic intervention of Stx-associated disease includes the Stx receptor immobilized on biologically inert particles designed for oral presentation.

Received 12/2/97 Accepted 12/8/97
Send correspondence to: Tom G. Obrig, Ph.D, Department of Microbiology and Immunology, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 1462, Tel: (716) 275-6634, Fax: (716) 473-9573, E-mail: Tom_Obrig@urmc.rochester.edu
Shiga toxin action and *E. coli* O157:H7

and Japan. Although *Shigella* and *Escherichia* represent different genera of bacteria, they are considered to be very close, both genetically and biochemically. The isoforms of Shiga toxins produced by these different pathogens are also very closely related in structure and function. However, some of the differences among members of the Shiga toxin group may be related to specific clinical developments in EHEC-related disease. Overall, the emphasis here is that these unique toxins are required for the vascular complications which occur following infection of humans with these bacterial pathogens.

2.2 Evolution of Stxs and the “emerging pathogen”, *E. coli* O157:H7

Although the exact origin of O157:H7 is not known, a thorough comparison of the enzyme-encoding genes common to virtually all *E. coli* revealed the closest relative to be another pathogen, *E. coli* O55:H7, that is capable of colonizing the gut, but which causes only a mild diarrhea in infants (3). It is important to note that in addition to a difference in serotypes (a property of surface lipopolysaccharides), the O157:H7 bacteria now harbor the genes for Shiga toxins. The Shiga toxin genes are encoded by bacteriophage in EHEC, but reside on the chromosome in *Shigella dysenteriae* type 1. The evolutionary origin of Shiga toxin genes remains somewhat of a mystery. However, as mentioned below a portion of Shiga toxin protein structure is closely related to other proteins found in higher plants, all of which inactivate eukaryotic ribosomes enzymatically (4). It appears that the fate of these protein toxins in animals and humans is determined by the additional associated protein subunits which have an affinity for specific carbohydrate molecules expressed on the surface of various eukaryotic cells.

2.3 Stxs is a vascular acting toxin

A comprehensive review of both clinical and basic science aspects of this topic has appeared recently (5). Although the virulence of *E. coli* O157:H7 without its toxin genes, i.e. an isogenic tox-minus mutant, has yet to be characterized in animals, it is likely that this pathogen would more resemble the virulence ability of *E. coli* O55:H7. A study of this type was conducted with *Shigella dysenteriae* 1, the results clearly showing that an isogenic tox-minus mutant could colonize lower primates, but had lost the ability to cause systemic vascular damage (6). Direct evidence of Shiga toxin action at the endothelial level was provided by a study in which purified Stx was administered to rabbits (i.v.) with ensuing vascular damage similar to that observed in humans, although this was restricted to the colon and brain in rabbits (7).

3. BIOCHEMICAL FEATURES OF THE SHIGA TOXINS

3.1 Subunit protein structure

Structurally, toxins in the Stx family each consist of one A-subunit responsible for the inhibitory activity and five identical B-subunits that determine binding specificity to eukaryotic cells (2,8). These toxins have been the subject of comprehensive review articles (2,8,9). Stx has been purified from *Shigella dysenteriae* 1 and shown to be a 68,000 kDa multi-subunit complex Shiga toxin comprised of a single 32kDa “A-subunit” and 5 x 7.7kDa “B-subunits” (10,11). Shiga-like toxins (Stx1, Stx2, and Stx2c) have also been purified from *E. coli* and appear similar to Shiga toxin (2). Despite minor differences between the A-subunit amino acid sequences of the Stx subspecies (Stx1, Stx2, Stx2c, etc.), all appear to exhibit identical enzymatic activity. However, differences in the B-subunit amino acid sequences are important in determining the receptor to which the Stx will bind, and thus the target cell type. Stx, Stx1, Stx2 and Stx2c all bind to the same receptor, the glycosphingolipid, Gb3 (9). Antigenically, Stx1 from *E. coli* is considered to be almost identical to Shiga toxin (Stx) from *S. dysenteriae* 1, but is distinct from *E. coli* Stx2, and Stx2c (2). Another member of the Stx family, Stx2e, is produced by unique isolates of *E. coli* that infect pigs, and thus is also called pig edema factor. Stx2e is not only antigenically distant from the other toxins, but prefers to bind to a different glycolipid, i.e. Gb4 (12,13).

3.2 Stx removal of a single base from 28S rRNA

The A-subunit of the Stx inhibits protein synthesis by inactivating ribosomes. The A subunit enzymatically removes a purine base from the 28S rRNA within the 60S ribosomal subunit (14). This modification of the ribosome prevents interaction of peptide elongation factors (EF-1 and EF-2) with the altered ribosome and stops protein synthesis at the level of peptide elongation (15,16).

3.3 Stx is a member of the ribosome inactivating protein family

Stx A-subunits work biochemically in a manner identical to that of a series of other ribosome inactivating proteins (RIPs) derived from higher plants. It has been 25 years since the first reports appeared defining the RIPs as ribosome-inactivating proteins (17,18). Primary amino acid structure is highly conserved within the enzymatic site of the RIPs (19). In contrast to the Stxs, most of the plant-derived RIPs exist as a single peptide without associated B-subunit proteins. An exception to this is the toxin, ricin. It should be emphasized that Stx and ricin are much more potent than the single peptide RIPs because their B-subunits direct the toxins to specific high affinity receptors on eukaryotic cells, whereas the single peptide RIPs interact weakly and less discriminately to certain sugar residues on cells. The natural importance of RIPs to bacteria is questionable with the exception that they may help in spread of the pathogen by increasing bacterial shedding during the disease process. Person-to-person spread of EHEC is a well-documented problem within a household and in day care centers (5). Plant-derived RIPs exhibit natural antiviral activity against plant RNA viruses, and likely serve a natural role in protecting plants from their viral pathogens. To date, attempts to harness
the power of of RIPs by biotechnology for use as immunotoxins for antitumor purposes has been a general disappointment. Although there have been some partial successes, the failures far outnumber the successes.

4. STX ISOTYPES PRODUCED BY E. COLI O157:H7

E. coli strains isolated from HUS patients produce moderate to high levels of Stxs (20). Such E. coli O157:H7 isolates normally produce either Stx2 alone or the combination of Stx1 and Stx2. Rarely do these strains produce Stx1 alone. Stx-producing E. coli serotypes other than O157:H7 have been associated with human disease, particularly outside the US, but toxin production by these isolates does not fit the pattern for O157:H7. A significant number of these non-O157:H7 isolates produce Stx1 alone, thus resembling Shigella dysenteriae 1 that elaborates Shiga toxin only (21). Whether either one of these toxin isotypes is more efficient in causing vascular damage in the clinical setting not known. However, Stx2 was shown to be approximately 1,000-times more potent than Stx1 in mice (22). Stx2 was also more potent, by three orders of magnitude, as a cytotoxic agent than Stx1 when incubated with human renal microvascular endothelial cells (23,24). These cells are the putative target of Stx in the hemolytic uremic syndrome caused by Stx-producing E. coli (25).

5. STX RECEPTORS EXPRESSED ON EUKARYOTIC CELLS

5.1 The Stx receptor is a glycosphingolipid, Gb3

The receptor for Stx, Stx1 and Stx2 on the cell surface of eukaryotic cells is the neutral glycolipid, globotriaosylceramide, Gb3 (26). A comprehensive review of this topic exits (27). Gb3 consists of a ceramide long chain fatty acid embedded in the plasma membrane, and a short extracellular trisaccharide chain terminated by a digalactose residue. The subunits of B-subunits of Stx facilitate high-affinity (Kd= 0.1 nM) binding of holotoxin to the terminal digalactose residue of Gb3. This terminal disaccharide contains the unusual carbohydrate linkage, galactose(alpha 1,4)-galactose. Gb3 is also known as cell differentiation marker, CD77 and is a tumor marker for a B-cell lymphoma. Gb3 trisaccharide also occurs on red blood cells of the Pk blood group.

5.2 Specificity of Stx-receptor interaction

Recently, the interaction between Stx molecules and Gb3 has been elucidated. Combined information from the crystal structure of Stx B-subunit and site-directed mutations in the subunit has led to the concept of two sites within the B-subunit that interact with the digalactose of Gb3 (27,28). Another important finding is that the chemical structure of the ceramide portion of Gb3 strongly influences which Stx isotypes bind to Gb3 (29). More exactly, the length of

6. INTERNALIZATION AND PROCESSING OF STX BY EUKARYOTIC CELLS

6.1 Stx enters by receptor-mediated endocytosis

Toxin internalization and processing is fundamental in dictating the effect of Stxs' on individual cell types. Stx enters and is processed in eukaryotic cells by a series of steps which are collectively referred to as receptor mediated endocytosis (33). This process involves trafficking of Stx between intracellular vesicles, endosomes and lysosomes to the golgi and finally to the endoplasmic reticulum where it is released into the cytoplasm. It is in the cytoplasm where Stx comes into contact with and enzymatically inactivates the ribosomes. The Gb3 receptor is required, but not sufficient for Stx action. Examples have been described of cells being resistant to Stx action because Stx could bind to, but not be internalized by the cells (34). In contrast, part of the reason that human renal microvascular endothelial cells are 1,000-times more sensitive to Stx2 vs. Stx1 is likely due to the efficiency of toxin internalization and processing by this cell type (23). Routing of Stx within
cells is also dictated by the chemical structure of the Gb3 receptor itself. For example, it has recently been demonstrated that shorter fatty acids (i.e., C16) in the ceramide portion of Gb3 direct the internalized Stx-Gb3 complexes directly to the nucleus in certain cell types (29). This is important because in the latter case, the cells succumb to apoptotic cell death rather than to necrosis through inhibition of cytoplasmic protein synthesis.

6.2 Processing and activation of Stx in target cells

Processing of Stx within the target cell by trypsin-like action releases the Stx-A1 peptide fragment (the enzymatic portion) from a shorter C-terminal Stx-A2 fragment. It is thought that this action, along with reduction of a disulfide bond within the same region of the Stx-A subunit is required for “activation” of Stx biological activity. However, changes in the trypsin cleavage site or in the cysteines of the disulfide bond yield Stx that is toxic to cells because the cells remain capable of cleaving and releasing the Stx-A1 subunit (35,36).

7. A ROLE FOR SHIGA TOXINS IN VASCULAR DISEASE

7.1 Evidence for Stxs’ role in EHEC-associated vascular disease

Some evidence indicating a role for the Shiga toxins at the vascular level are: 1) the production of active Shiga toxin is required for S. dysenteriae 1 to cause bloody dysentery, but not for watery diarrhea, in monkeys (6). 2) Stx has been detected in serum of HUS patients (3,37). 5) The authors concluded that endothelial cells isolated from human kidney also express Gb3 and are very sensitive to Shiga toxin (24). 9) isolated glomerular endothelial cells of humans are capable of expressing Gb3 and are exquisitely sensitive to the Stxs (24,44). 10) GB3 is expressed on glomerular endothelial cells of young children (45). 11) purified Stx induces cytokine production in isolated monocyte/macrophage (46). 12) Stx1 presented to mice causes a renal-specific induction of a TNF promoter-encoded gene (47). 13) Stx1 induces expression of endothelial adhesion molecules for neutrophil adherence in static endothelial cell cultures and under laminar flow conditions (48).

7.2 Additional bacterial factors in EHEC-associated vascular disease

It is unlikely that Shiga toxins are the only factors produced by EHEC that lead to vascular damage. For example, E. coli O157:H7 elaborates an hemolysin, the gene for which is encoded on the large (60 Mda) plasmid (49). This toxin is capable of lysing eukaryotic cells (50). However, it is not known to what extent this toxin contributes to the virulence of EHEC. Other factors may be encoded by EHEC, but these will soon be identified as part of the E. coli genome sequencing project which has been extended to include EHEC bacteria (51).

8. SENSITIVITY OF HUMAN ENDOTHELIAL CELLS TO STXS

8.1 Endothelial cells are the putative target of Stxs

It has been 10 years since the first report indicating that Stx was cytotoxic to endothelial cells (52). Those studies were prompted by previous reports that endothelial cells were the site of initial damage in HUS (25,53,54). Histopathologic examination of kidney samples from HUS patients revealed glomerular vascular capillaries with swollen endothelial cells (53,55). In this study, microvascular angiopathy was present in all patients diagnosed with HUS and having an infection with Stx-producing E. coli. The authors concluded that endothelial cells are the putative primary target cells of Stx. Others have demonstrated that human kidney contains the Gb3 receptor for Shiga toxin, particularly in young children (31). Endothelial cells isolated from human kidney also express Gb3 and are very sensitive to Shiga toxin (24).

Although glomerular endothelial cells appear to represent the primary target of the Stxs, more evidence is accumulating, both direct and indirect, that endothelial cells from other vascular beds are also subject to Stx damage. It is now certain that microvascular (vs. large vessel) endothelial cells from a number of locations are very sensitive to the Stxs. This would explain the nature of hemorrhagic colitis, and changes in some other organs (e.g., pancreas, lung), and why neurological complications occur in over 30 to 50% of HUS patients. These may all be due to the preference of Stxs to recognize microvascular endothelial cells.

New evidence shows that Stxs can directly interact with vascular cell types other than endothelial cells in a way that may be important to HUS (9,56,57). In an earlier report, it was suggested that Stx interacts directly with macrophage to elicit cytokines (56). Indeed, this has now been demonstrated directly by murine macrophage responding to Stx1 with increased IL-1 and IL-6 production (46). Although macrophage are considerably less sensitive to Stx, these data are relevant and point out that release of cytokines from macrophage would add to the validity of the hypothesis described below that Stx action on the endothelium is enhanced by cytokines in developing HUS (58,59,60,61).
8.2 Host cytokine regulation of Stx-sensitivity in endothelial cells

To date, all evidence suggests that Stxs combine with other bacterial and host factors to cause HUS. Workers in this field tend to agree that induction of cytokines by LPS and Stx in macrophage does take place and this may be more localized to the kidney (46,62,63). As stated above, Stx interacts directly with other cell types such as macrophage to elicit cytokines and adherence molecules. Cytokines may act alone or in combination to directly alter the physiological state of endothelial cells. Firstly, these factors tilt the endothelial hemostatic balance towards a more procoagulant/antifibrinolytic state (62,64,65,66,67,68) which is a hallmark of HUS. Secondly, LPS and some cytokines induce Gb3 on endothelial cells (24,59,69), through a series of signal-transduction steps involving protein kinase C (70,71). The author views EHEC-associated HUS as a gram negative bacterial response which has been diverted by Stx. Future research should reveal the signal transduction pathways activated during induction of Gb3 by LPS, cytokines, and other agents. The more difficult task will be to determine the individual events that take place in humans during development of Stx-associated HUS. This is particularly true in the absence of a reproducible animal model for this disease.

9. ACKNOWLEDGMENTS

This work was supported by UPHS grants AI24431 and DK52073.

10. REFERENCES

Shiga toxin action and *E. coli* O157:H7

Shiga toxin action and *E. coli* O157:H7

Shiga toxin action and *E. coli* O157:H7

